Please wait a minute...
材料研究学报  2023, Vol. 37 Issue (10): 770-780    DOI: 10.11901/1005.3093.2022.451
  研究论文 本期目录 | 过刊浏览 |
重力对镍基单晶高温合金枝晶生长和微观偏析的影响
孔亚非1,2, 罗兴宏1,2(), 李洋1, 刘实1,2
1.中国科学院金属研究所 师昌绪先进材料创新中心 沈阳 110016
2.中国科学技术大学材料科学与工程学院 沈阳 110016
Effect of Gravity on Dendrite Growth and Microsegregation of Ni-based Single Crystal Superalloy
KONG Yafei1,2, LUO Xinghong1,2(), LI Yang1, LIU Shi1,2
1.Shi -Changxu Innovation Center for Advanced Materials, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
2.School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China
引用本文:

孔亚非, 罗兴宏, 李洋, 刘实. 重力对镍基单晶高温合金枝晶生长和微观偏析的影响[J]. 材料研究学报, 2023, 37(10): 770-780.
Yafei KONG, Xinghong LUO, Yang LI, Shi LIU. Effect of Gravity on Dendrite Growth and Microsegregation of Ni-based Single Crystal Superalloy[J]. Chinese Journal of Materials Research, 2023, 37(10): 770-780.

全文: PDF(21742 KB)   HTML
摘要: 

使用长50 m的落管研究Ni-Cr-Al-W-Ta镍基单晶高温合金在重力(1g)和微重力(μg)条件下的凝固行为。用金相显微镜(OM)观察合金的凝固组织并用图像分析软件测量和统计一次和二次枝晶间距,使用扫描电镜能谱(SEM-EDS)测定不同位置枝晶干与枝晶间的化学成分并计算微观偏析系数。结果表明,在重力和微重力条件下这种合金的枝晶特征和合金元素的微观偏析明显不同。重力样品一次和二次枝晶间距比微重力样品的大,随着凝固距离的增大一次枝晶间距的差异变大,而二次枝晶间距的差距变化不大。随着凝固的进行,微重力样品枝晶间Ta、Cr和Al元素的含量呈现先明显升高后略微降低的趋势,W元素含量呈现逐渐下降的趋势,枝晶间液相的密度呈现略微降低的趋势。重力样品枝晶间Ta、Cr和Al元素含量的分布趋势与微重力样品基本相似,W元素含量的分布则与微重力样品明显不同,大部分凝固阶段呈上升趋势,使枝晶间液相的密度沿逆重力方向提高。上述结果表明,在重力条件下凝固前沿溶质密度差导致的对流作用微弱,不是造成枝晶间距增加的主要原因,主要原因应该与凝固前沿热对流造成的温度梯度的降低有关。

关键词 金属材料镍基单晶高温合金枝晶生长微观偏析微重力凝固    
Abstract

The solidification behavior of a Ni-based Ni-Cr-Al-W-Ta single crystal superalloy in normal gravity (1g) and microgravity (μg) conditions were comparatively investigated by using a 50 metre-high drop tube. The solidification microstructure of the alloy was observed using optical metalloscopy (OM), and the primary and secondary dendrite spacing of the samples were measured and counted by using an image analysis software. Scanning electron microscope (SEM-EDS) was used to determine the chemical compositions of dendrite trunk and interdendrite at different locations, and then the microsegregation coefficient was calculated. The results show that the dendrite characteristics and microsegregation are significantly different in 1g and μg conditions respectively. The primary and secondary dendrite spacing tested in 1g sample are larger than those in μg sample, and the difference of primary dendrite spacing between 1g and μg sample gradually increases with the increase of solidification distance, while the difference of secondary dendrite spacing does not change much. With the process of solidification, the contents of Ta, Cr and Al between dendrites tested in μg sample show a trend of increasing obviously at first and then decreasing slightly, while the W content has a trend of decreasing gradually, and the interdendritic liquid phase density shows a trend of decreasing slightly. The distribution of the Ta, Cr and Al content between dendrites tested in 1g sample are basically similar to those in μg sample, while the distribution of W is significantly different, showing an upward trend in most solidification stages, resulting in the increase of the interdendritic liquid phase density just along the opposite direction of gravity. These results indicate that the convection effect caused by the solute density difference at the front of solidification interface was weak in normal gravity condition, which was not the main reason for the increase of dendrite spacing. It is believed that the main reason should be related to the reduction of temperature gradient caused by thermal convection at the front of solidification interface.

Key wordsmetallic materials    Ni-based single crystal superalloy    dendrite growth    microsegregation    microgravity    solidification
收稿日期: 2022-08-22     
ZTFLH:  TG132.32  
基金资助:中国载人航天工程空间应用系统项目
通讯作者: 罗兴宏,研究员,xhluo@imr.ac.cn,研究方向为微重力材料科学
Corresponding author: LUO Xinghong, Tel: 13940023803, E-mail: xhluo@imr.ac.cn
作者简介: 孔亚非,男,1994年生,博士生
CrAlTaWNi
10628Bal.
表1  合金的化学成分
Sample

Heating

time

/ s

Heating

power

/ kW

Heating

length

/ mm

Cooling condition
1g160.610Stand still for 3.2 s
μg160.610Free fall
表2  在重力与微重力条件下凝固实验参数
图1  重力与微重力样品的温度-时间曲线
图2  重力样品和微重力样品的纵横截面凝固组织
图3  重力样品和微重力样品的横截面枝晶形貌
图4  重力样品和微重力样品纵截面上的二次枝晶臂
图5  重力和微重力样品不同位置处的一次枝晶间距和二次枝晶间距
图6  重力样品和微重力样品的外延生长区域元素面分布图
Element / %,mass fraction1g sampleμg sample
Dendrite trunk / cdInterdendrite / ciksegDendrite trunk / cdInterdendrite / cikseg
Al5.267.290.7225.687.030.808
Cr9.3612.200.7679.4212.030.783
Ta1.813.780.4791.363.280.415
W10.994.202.61711.225.552.022
Ni72.5872.53-72.3272.11-
表3  重力和微重力样品中枝晶干和枝晶间的成分
图7  轴线上终凝液相中的元素沿生长方向的分布
图8  样品中轴线上的元素微观偏析系数
图9  合金熔体和枝晶间液相中对流的示意图
图10  一次枝晶间距与枝晶生长速度的关系
图11  终凝液相沿生长方向密度的变化
1 Hu Z Q, Liu L R, Jin T, et al. Development of the Ni-base single crystal superalloys [J]. Aeroengine, 2005, 31(3): 1
1 胡壮麒, 刘丽荣, 金 涛 等. 镍基单晶高温合金的发展 [J]. 航空发动机, 2005, 31(3): 1
2 Wang L, Dong J X, Yang C J, et al. Mechanisms for macro segregation freckles and their criteria [J]. Foundry Technol., 2007, 28(5): 585
2 王 玲, 董建新, 杨春军 等. 宏观偏析黑斑形成机理及其判据 [J]. 铸造技术, 2007, 28(5): 585
3 Al-Jarba K A, Fuchs G E. Effect of carbon additions on the as-cast microstructure and defect formation of a single crystal Ni-based superalloy [J]. Mater. Sci. Eng., 2004, 373A(1-2) : 255
4 Beckermann C, Gu J P, Boettinger W J. Development of a freckle predictor via Rayleigh number method for single-crystal nickel-base superalloy castings [J]. Metall. Mater. Trans., 2000, 31A(10) : 2545
5 Sun D K, Zhu M F, Yang C R, et al. Modelling of dendritic growth in forced and natural convections [J]. Acta Phys. Sin., 2009, 58(): 285
5 孙东科, 朱鸣芳, 杨朝蓉 等. 强制对流和自然对流作用下枝晶生长的数值模拟 [J]. 物理学报, 2009, 58(): 285
6 Zhou B H, Jung H, Mangelinck-Noël N, et al. Comparative study of the influence of natural convection on directional solidification of Al-3.5 wt% Ni and Al-7 wt% Si alloys [J]. Adv. Space Res., 2008, 41(12): 2112
doi: 10.1016/j.asr.2007.06.038
7 Banaszek J, McFadden S, Browne D J, et al. Natural convection and columnar-to-equiaxed transition prediction in a front-tracking model of alloy solidification [J]. Metall. Mater. Trans., 2007, 38A(7) : 1476
8 Ma D X, Bührig-Polaczek A. Avoiding grain defects in single crystal components by application of a heat conductor technique [J]. Int. J. Mater. Res., 2009, 100(8): 1145
doi: 10.3139/146.110160
9 Yang X L, Ness D, Lee P D, et al. Simulation of stray grain formation during single crystal seed melt-back and initial withdrawal in the Ni-base superalloy CMSX4 [J]. Mater. Sci. Eng., 2005, 413-414A: 571
10 Zhou Y F, Li X Y, Bai S Q, et al. Comparison of space- and ground-grown Bi2Se0.21Te2.79 thermoelectric crystals [J]. J. Cryst. Growth, 2010, 312(6): 775
doi: 10.1016/j.jcrysgro.2009.12.061
11 Ostrogorsky A G, Marin C, Volz M, et al. Initial transient in Zn-doped InSb grown in microgravity [J]. J. Cryst. Growth, 2009, 311(12): 3243
doi: 10.1016/j.jcrysgro.2009.03.036
12 De Wilde J, Nagels E, Lemoisson F, et al. Unconstrained growth along a ternary eutectic solidification path in Al-Cu-Ag: preparation of a MAXUS sounding rocket experiment [J]. Mater. Sci. Eng., 2005, 413-414A: 514
13 Thi H N, Dabo Y, Drevet B, et al. Directional solidification of Al-1.5 wt% Ni alloys under diffusion transport in space and fluid-flow localisation on earth [J]. J. Cryst. Growth, 2005, 281(2-4): 654
doi: 10.1016/j.jcrysgro.2005.04.061
14 Luo X H, Feng S B, Li Y. Solidification of AlCuMgZn single crystal in space [J]. Chin. J. Space Sci., 2016, 36(4): 445
doi: 10.11728/cjss2016.04.445
14 罗兴宏, 封少波, 李 洋. A1CuMgZn单晶合金的空间凝固 [J]. 空间科学学报, 2016, 36(4): 445
15 Kong Y F, Luo X H, Li Y, et al. Gravity-induced solidification segregation and its effect on dendrite growth in Al-2.8 wt.% Cu alloy [J]. Microgravity Sci. Technol., 2021, 33(6): 72
doi: 10.1007/s12217-021-09913-4
16 Feng S B, Luo X H. Dendrite growth of SRR99 Nickel-base single crystal superalloy under microgravity condition formed by long drop tube [J]. Chin. J. Rare Metals, 2012, 36(3): 341
16 封少波, 罗兴宏. SRR99镍基单晶高温合金在落管微重力环境下的枝晶生长行为研究 [J]. 稀有金属, 2012, 36(3): 341
17 Zhang N N, Luo X H, Feng S B, et al. Mechanism of gravity effect on solidification microstructure of eutectic alloy [J]. J. Mater. Sci. Technol., 2014, 30(5): 499
doi: 10.1016/j.jmst.2013.11.009
18 Yang C B, Liu L, Zhao X B, et al. Dendrite arm spacings and microsegregations in 〈001〉 and 〈011〉 orientated single crystal superalloys DD407 [J]. Acta Metall. Sin., 2011, 47(10): 1246
18 杨初斌, 刘 林, 赵新宝 等. 〈001〉和〈011〉取向DD407单晶高温合金枝晶间距和微观偏析 [J]. 金属学报, 2011, 47(10): 1246
doi: 10.3724/SP.J.1037.2011.00142
19 Hu H Q. Principle of Metal Solidification 2nd ed. [M]. Beijing: China Machine Press, 2000
19 胡汉起. 金属凝固原理 2版 [M]. 北京: 机械工业出版社, 2000
20 Lipnicki Z, Weigand B. An experimental and theoretical study of solidification in a free-convection flow inside a vertical annular enclosure [J]. Int. J. Heat Mass Transfer, 2012, 55(4): 655
doi: 10.1016/j.ijheatmasstransfer.2011.10.044
21 Hunt J D. Solidification and Casting of Metals [M]. London: The Metals Society, 1979
22 Wills V A, McCartney D G. A comparative study of solidification features in nickel-base superalloys: microstructural evolution and microsegregation [J]. Mater. Sci. Eng., 1991, 145A(2) : 223
23 Yeoh G H, De Vahl Davis G, Leonardi E, et al. A numerical and experimental study of natural convection and interface shape in crystal growth [J]. J. Cryst. Growth, 1997, 173(3-4): 492
doi: 10.1016/S0022-0248(96)00851-2
24 Mullis A M. The effects of fluid flow on secondary arm coarsening during dendritic solidification [J]. J. Mater. Sci., 2003, 38(11): 2517
doi: 10.1023/A:1023977723475
25 Mukai K, Li Z S, Mills K C. Prediction of the densities of liquid Ni-based superalloys [J]. Metall. Mater. Trans., 2005, 36B(2) : 255
26 Li Z S, Mills K C, McLean M, et al. Measurement of the density and surface tension of Ni-based superalloys in the liquid and mushy states [J]. Metall. Mater. Trans., 2005, 36B(2) : 247
27 Feng S B, Zhang N N, Luo X H. Influence of segregation on liquid density in the mushy zone of DZ483 Ni-based superalloy [J]. Acta Metall. Sin., 2012, 48(5): 541
doi: 10.3724/SP.J.1037.2012.00037
27 封少波, 张楠楠, 罗兴宏. 偏析对DZ483镍基高温合金糊状区内液相密度的影响 [J]. 金属学报, 2012, 48(5): 541
doi: 10.3724/SP.J.1037.2012.00037
[1] 毛建军, 富童, 潘虎成, 滕常青, 张伟, 谢东升, 吴璐. AlNbMoZrB系难熔高熵合金的Kr离子辐照损伤行为[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] 赵政翔, 廖露海, 徐芳泓, 张威, 李静媛. 超级奥氏体不锈钢24Cr-22Ni-7Mo-0.4N的热变形行为及其组织演变[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] 幸定琴, 涂坚, 罗森, 周志明. C含量对VCoNi中熵合金微观组织和性能的影响[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] 欧阳康昕, 周达, 杨宇帆, 张磊. LPSOMg-Y-Er-Ni合金的组织和拉伸性能[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] 徐利君, 郑策, 冯小辉, 黄秋燕, 李应举, 杨院生. 定向再结晶对热轧态Cu71Al18Mn11合金的组织和超弹性性能的影响[J]. 材料研究学报, 2023, 37(8): 571-580.
[8] 熊诗琪, 刘恩泽, 谭政, 宁礼奎, 佟健, 郑志, 李海英. 固溶处理对一种低偏析高温合金组织的影响[J]. 材料研究学报, 2023, 37(8): 603-613.
[9] 刘继浩, 迟宏宵, 武会宾, 马党参, 周健, 徐辉霞. 喷射成形M3高速钢热处理过程中组织的演变和硬度偏低问题[J]. 材料研究学报, 2023, 37(8): 625-632.
[10] 由宝栋, 朱明伟, 杨鹏举, 何杰. 合金相分离制备多孔金属材料的研究进展[J]. 材料研究学报, 2023, 37(8): 561-570.
[11] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[12] 王昊, 崔君军, 赵明久. 镍基高温合金GH3536带箔材的再结晶与晶粒长大行为[J]. 材料研究学报, 2023, 37(7): 535-542.
[13] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.
[14] 秦鹤勇, 李振团, 赵光普, 张文云, 张晓敏. 固溶温度对GH4742合金力学性能及γ' 相的影响[J]. 材料研究学报, 2023, 37(7): 502-510.
[15] 刘天福, 张滨, 张均锋, 徐强, 宋竹满, 张广平. 缺口应力集中系数对TC4 ELI合金低周疲劳性能的影响[J]. 材料研究学报, 2023, 37(7): 511-522.