Please wait a minute...
材料研究学报  2022, Vol. 36 Issue (5): 365-372    DOI: 10.11901/1005.3093.2021.405
  研究论文 本期目录 | 过刊浏览 |
原位研究M2高速钢微裂纹的萌生和扩展
胡海波1, 朱丽慧1(), 段元满1, 吴晓春1, 顾炳福2
1.上海大学材料科学与工程学院 上海 200444
2.江苏省福达特种钢有限公司 扬中 212200
In-situ Study of Microcrack Initiation and Propagation of M2 High Speed Steel
HU Haibo1, ZHU Lihui1(), DUAN Yuanman1, WU Xiaochun1, GU Bingfu2
1.School of Materials Science and Engineering, Shanghai University, Shanghai 200444, China
2.Jiangsu Fuda Special Steel Co, Ltd, Yangzhong 212200, China
引用本文:

胡海波, 朱丽慧, 段元满, 吴晓春, 顾炳福. 原位研究M2高速钢微裂纹的萌生和扩展[J]. 材料研究学报, 2022, 36(5): 365-372.
Haibo HU, Lihui ZHU, Yuanman DUAN, Xiaochun WU, Bingfu GU. In-situ Study of Microcrack Initiation and Propagation of M2 High Speed Steel[J]. Chinese Journal of Materials Research, 2022, 36(5): 365-372.

全文: PDF(18336 KB)   HTML
摘要: 

使用扫描电子显微镜(SEM)内的原位加载台对M2高速钢进行了原位拉伸实验。结果表明:在M2高速钢的原位拉伸过程中,微裂纹主要在大尺寸共晶碳化物与基体的界面处萌生和扩展。与回火马氏体相比,裂纹更容易在残余奥氏体上萌生。碳化物的尺寸、形状和种类,对微裂纹的萌生和扩展也有重要的影响。减少块状残余奥氏体、一次共晶碳化物和MC碳化物的数量、减小碳化物的尺寸和改善碳化物形状,可减缓微裂纹的萌生和扩展。

关键词 金属材料M2高速钢原位拉伸试验微裂纹萌生与扩展碳化物    
Abstract

The tensile behavior of M2 high speed steel was studied by using an in-situ loading platform in scanning electron microscope (SEM). The results show that during the in-situ tensile process, microcracks mainly initiate and propagate at the interface between large eutectic carbide and the matrix of M2 high speed steel. Compared with the tempered martensite, cracks initiate more easily on the retained austenite. The size, shape and type of carbides also have important effect on the initiation and propagation of microcracks. It follows that reducing the amount and the size of massive residual austenite, primary eutectic carbides, and MC carbides, as well as appropriately adjusting the shape of carbides can slow down the initiation and propagation of microcracks.

Key wordsmetallic materials    M2 high speed steel    in-situ tensile test    microcracks initiation and propagation    carbide
收稿日期: 2021-07-14     
ZTFLH:  TG430.40  
基金资助:国家重点研发计划(2016YFB0300403);2017年镇江金山英才计划;2018年江苏省高层次创新创业人才引进计划
作者简介: 胡海波,男,1997年生,硕士生
CWMoCrVSiMnPSFe
0.8506.3805.3704.3402.1000.2280.2800.0670.020Bal.
表1  M2高速钢的化学成分
图1  原位拉伸试样的形状和尺寸
图2  淬火+回火后M2高速钢的SEM照片和EDS分析
图3  M2高速钢淬火+回火后基体组织的TEM照片
图4  M2高速钢的原位拉伸应力-应变曲线
图5  在不同条件下微裂纹的萌生和扩展
图6  基体处萌生的微裂纹及其EDS分析
图7  有裂纹区(区域1)与无裂纹区(区域2)纳米压痕的载荷-位移曲线
图8  碳化物引起的微裂纹的形貌
图9  不同形状碳化物与基体界面处微裂纹的数量统计
图10  大尺寸碳化物的断裂形貌和EDS面扫描能谱
1 Boccalini M, Goldenstein H. Solidification of High Speed Steels [J]. Int. Met. Rev., 2001, 46(2): 92
doi: 10.1179/095066001101528411
2 Keun C H, Sunghak L, Hui C L. Effects of alloying elements on microstructure and fracture properties of cast high speed steel rolls: Part I: Microstructural analysis [J]. Mater. Sci. Eng. A, 1998, 254(1): 282
doi: 10.1016/S0921-5093(98)00626-1
3 Luan Y, Song N, Bai Y, et al. Effect of solidification rate on the morphology and distribution of eutectic carbides in centrifugal casting high-speed steel rolls [J]. J. Mater. Process. Technol., 2010, 210(3): 536
doi: 10.1016/j.jmatprotec.2009.10.017
4 Leskovšek V, Ule B, Lii B. Relations between fracture toughness, hardness and microstructure of vacuum heat-treated high-speed steel [J]. J. Mater. Process. Technol., 2002, 127(3): 298
doi: 10.1016/S0924-0136(02)00280-7
5 Tier M D, Fantinelli D G, Parcianello C T, et al. Effect of heat and cryogenic treatment on wear and toughness of HSS AISI M2 [J]. J. Mater. Process. Technol., 2020, 9(6): 12354
6 Lu L, Huang J F, Hou L G. Effect of niobium on the microstructure and properties of spray-formed M3:2 high speed steel [J]. J. Univ. Sci. Technol. Beijing, 2014, 36(10): 1292
6 卢 林, 黄进峰, 侯陇刚. 铌对喷射成形M3:2型高速钢组织和性能的影响 [J]. 工程科学学报, 2014, 36(10): 1292
7 Rodenburg C, et al. A quantitative analysis of the influence of carbides size distributions on wear behaviour of high-speed steel in dry rolling/sliding contact [J]. Acta Mater., 2007, 55(7): 2443
doi: 10.1016/j.actamat.2006.11.039
8 Yu F, Xu D, Luo D. Carbide defect in high speed steel [J]. J. Iron Steel Res., 2008, 20(6): 1
8 俞 峰, 许 达, 罗 迪. 高速钢中的碳化物缺陷 [J]. 钢铁研究学报, 2008, 20(6): 1
9 Torres E A, Ramírez A J. In situ scanning electron microscopy [J]. Sci. Technol. Weld. Joining, 2011, 16(1): 1
doi: 10.1179/136217110X12918228303775
10 Jiang C, Lu H, Zhang H, et al. Recent advances on in situ sem mechanical and electrical characterization of low-dimensional nanomaterials [J]. Scanning, 2017, 2017(8): 1
11 Chen X, Esa V, Jonny G. In-situ SEM observation on fracture behavior of austempered silicon alloyed steel [J]. China Foundry, 2009, 6(3): 185
12 Liu B L. The in-situ study on the coordinate rotation of metal micro structure in plastic deformation [D]. Nanjing: Southeast University, 2016
12 刘宝良. 金属变形过程中微观组织协调行为的原位研究 [D]. 南京: 东南大学, 2016
13 Chen L L. Study on alloy carbides control in high speed steel [D]. Nanjing: Southeast University, 2016
13 陈雷雷. 高速钢合金碳化物控制研究 [D]. 南京: 东南大学, 2016
14 Fu S, Pan W Q, Wang A T, et al. Phase transformation refinement of coarse primary carbides in M2 high speed steel [J]. Prog. Nat. Sci.: Mater. Int., 2011, 21(2): 180
doi: 10.1016/S1002-0071(12)60053-7
15 Zhang X F, Yin X Y, Fang F, et al. Influence of rare earths on eutectic carbides in AISI M2 high speed steel [J]. J. Rare Earths, 2012, 30(10): 1075
doi: 10.1016/S1002-0721(12)60181-1
16 Li Z X. The energy absorption effect and microstructure evolution of high-speed steels under high pressure [D]. Luoyang: Henan University of Science and Technology, 2015
16 李志勋. 高应力作用下高速钢能量吸收效应及组织演变 [D]. 洛阳: 河南科技大学, 2015
17 Ghosh A, Ray A, Chakrabarti D, et al. Cleavage initiation in steel: Competition between large grains and large particles [J]. Mater. Sci. Eng. A, 2013, 561(20): 126
doi: 10.1016/j.msea.2012.11.019
18 Echeverría A, Rodriguez-Ibabe J M. The role of grain size in brittle particle induced fracture of steels [J]. Mater. Sci. Eng. A, 2003, 346(1): 149
doi: 10.1016/S0921-5093(02)00538-5
19 Shu D L. Mechanical Properties of Metal [M]. Beijing: China Machine Press, 1987
19 束德林. 金属力学性能 [M]. 北京: 机械工业出版社, 1987
20 Casellas D, Caro J, Molas S, et al. Fracture toughness of carbides in tool steels evaluated by nanoindentation [J]. Acta Mater., 2007, 55(13): 4277
doi: 10.1016/j.actamat.2007.03.028
21 Zhou X, Zheng Z, Zhang W, et al. Deformation-induced carbide transformation in M2 high-speed steel [J]. Metall. Mater. Trans. A, 2019, 51(2): 568
22 Ha T K, Yang E I, Jung J Y, et al. Effect of alloying elements and homogenization treatment on carbide formation behavior in M2 high speed steels [J]. Journal of the Korean Institute of Metals and Materials, 2010, 48(7): 589
23 Chaus A S, Dománková M. Precipitation of secondary carbides in M2 high-speed steel modified with titanium diboride [J]. J. Mater. Eng. Perform., 2013, 22(5): 1412
doi: 10.1007/s11665-012-0407-9
[1] 毛建军, 富童, 潘虎成, 滕常青, 张伟, 谢东升, 吴璐. AlNbMoZrB系难熔高熵合金的Kr离子辐照损伤行为[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] 赵政翔, 廖露海, 徐芳泓, 张威, 李静媛. 超级奥氏体不锈钢24Cr-22Ni-7Mo-0.4N的热变形行为及其组织演变[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] 幸定琴, 涂坚, 罗森, 周志明. C含量对VCoNi中熵合金微观组织和性能的影响[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] 欧阳康昕, 周达, 杨宇帆, 张磊. LPSOMg-Y-Er-Ni合金的组织和拉伸性能[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] 徐利君, 郑策, 冯小辉, 黄秋燕, 李应举, 杨院生. 定向再结晶对热轧态Cu71Al18Mn11合金的组织和超弹性性能的影响[J]. 材料研究学报, 2023, 37(8): 571-580.
[8] 熊诗琪, 刘恩泽, 谭政, 宁礼奎, 佟健, 郑志, 李海英. 固溶处理对一种低偏析高温合金组织的影响[J]. 材料研究学报, 2023, 37(8): 603-613.
[9] 刘继浩, 迟宏宵, 武会宾, 马党参, 周健, 徐辉霞. 喷射成形M3高速钢热处理过程中组织的演变和硬度偏低问题[J]. 材料研究学报, 2023, 37(8): 625-632.
[10] 由宝栋, 朱明伟, 杨鹏举, 何杰. 合金相分离制备多孔金属材料的研究进展[J]. 材料研究学报, 2023, 37(8): 561-570.
[11] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[12] 王昊, 崔君军, 赵明久. 镍基高温合金GH3536带箔材的再结晶与晶粒长大行为[J]. 材料研究学报, 2023, 37(7): 535-542.
[13] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.
[14] 秦鹤勇, 李振团, 赵光普, 张文云, 张晓敏. 固溶温度对GH4742合金力学性能及γ' 相的影响[J]. 材料研究学报, 2023, 37(7): 502-510.
[15] 刘天福, 张滨, 张均锋, 徐强, 宋竹满, 张广平. 缺口应力集中系数对TC4 ELI合金低周疲劳性能的影响[J]. 材料研究学报, 2023, 37(7): 511-522.