Please wait a minute...
材料研究学报  2022, Vol. 36 Issue (2): 123-132    DOI: 10.11901/1005.3093.2021.207
  研究论文 本期目录 | 过刊浏览 |
ZrTi微合金化低碳钢形变奥氏体再结晶和析出相的影响
罗瀚宇, 曹建春(), 曾敏, 郝天赐, 高鹏, 王俊彩, 张凡林
昆明理工大学材料科学与工程学院 昆明 650093
Effect of Zr on Deformed Austenite Recrystallization and Precipitates in Ti-Microalloyed Low Carbon Steel
LUO Hanyu, CAO Jianchun(), ZENG Min, HAO Tianci, GAO Peng, WANG Juncai, ZHANG Fanling
School of Material Science and Engineering, Kunming University of Science and Technology, Kunming 650093, China
引用本文:

罗瀚宇, 曹建春, 曾敏, 郝天赐, 高鹏, 王俊彩, 张凡林. ZrTi微合金化低碳钢形变奥氏体再结晶和析出相的影响[J]. 材料研究学报, 2022, 36(2): 123-132.
Hanyu LUO, Jianchun CAO, Min ZENG, Tianci HAO, Peng GAO, Juncai WANG, Fanling ZHANG. Effect of Zr on Deformed Austenite Recrystallization and Precipitates in Ti-Microalloyed Low Carbon Steel[J]. Chinese Journal of Materials Research, 2022, 36(2): 123-132.

全文: PDF(14710 KB)   HTML
摘要: 

通过多道次模拟压缩实验,研究不同Zr和Ti含量的三种Ti微合金化低碳钢在950℃~1050℃形变奥氏体再结晶和析出相的变化和最佳变形温度。结果表明,Ti含量的提高和Zr的加入使Ti微合金钢形变奥氏体的再结晶和晶粒长大延迟。Zr的加入还能增加Ti微合金钢中析出相的数量、改善析出相尺寸分布的均匀性进而得到相对均匀的奥氏体组织。变形温度为1000℃时的Ti-Zr微合金钢奥氏体组织最细小均匀。

关键词 金属材料Ti微合金钢多道次再结晶析出相    
Abstract

The recrystallization and precipitates of deformed austenite for three Ti-microalloyed low carbon steels with different amount of Zr and Ti in the temperature range of 950°C to 1050°C were investigated by means of multi-pass compression test to simulate the actual rolling situation, in order to acquire the optimum deformation temperature for the alloys. The results show that the increase of Ti content will retard the occurrence of the recrystallization of deformed austenite and the recrystallization grain growth in Ti-microalloyed steels, while the addition of Zr will also retard the occurrence of recrystallization of deformed austenite in Ti-microalloy steel, and inhibit the growth of recrystallization grains. Besides, the addition of Zr increases the number of precipitates in Ti-microalloyed steel, and improves the size uniformity of precipitated phase, so that the Ti-Zr microalloyed steel consists of a relatively uniform austenite microstructure. When the deformation temperature is 1000℃, the Ti-Zr microalloyed steel has the finest uniform austenite microstructure.

Key wordsmetallic materials    Ti microalloyed steel    multi-pass    recrystallization    precipitates
收稿日期: 2021-04-02     
ZTFLH:  TG142.1  
基金资助:国家自然科学基金(51761019)
作者简介: 罗瀚宇,男,1996年生,硕士
No.CSiMnSPNTiZrFe
0.13Ti0.0460.211.500.0050.00410.00190.13-Bal.
0.18Ti0.0470.221.480.0050.00730.00140.18-Bal.
Ti-Zr0.0480.221.500.0050.00720.00120.130.035Bal.
表1  实验用钢的化学成分
图1  热模拟实验的工艺路线图
图2  0.13Ti钢、0.18Ti钢和Ti-Zr钢的等温多道次变形应力-应变曲线
图3  在不同变形温度各道次的峰值应力
图4  0.13Ti钢、0.18Ti钢和Ti-Zr钢在1200℃加热5min后原奥氏体晶粒的形貌
图5  0.13Ti钢、0.18Ti钢和Ti-Zr钢等温多道次变形后的原奥氏体晶粒形貌
图6  0.13Ti钢、0.18Ti钢和Ti-Zr钢在1000℃等温多道次变形后析出相的STEM形貌和能谱
图7  Ti-Zr钢内复合析出相的STEM形貌和元素分布
图8  三种实验用钢等温多道次变形后的奥氏体再结晶晶粒尺寸分布
图9  三种实验用钢等温多道次变形后的奥氏体再结晶晶粒平均尺寸
No.Temperature / ℃
10001050
0.13Ti0.4170.463
0.18Ti0.5160.444
Ti-Zr0.3960.432
表2  三种试验钢奥氏体晶粒尺寸分布的不均匀度
图10  0.13Ti钢、0.18Ti钢和Ti-Zr钢中合金元素的平衡固溶量[Ti]、[Zr]、[C]和[N]随温度的变化
1 Wang L , Xiao S F , Tang Z H , et al . Study of static recrystallization behavior of austenite in a Ti-V microalloyed steel [J]. Mater. Express, 2020, 10: 1047
2 Oliveira A P , Gonzalez B M . The engineering behind the mechanical properties enhancement on HSLA steels, microalloyed with niobium: Effects of boron and titanium [J]. J. Mater. Res. Technol. 2020, 9: 9372
3 Gui L T , Long M J , Zhang H H , et al . Study on the precipitation and coarsening of TiN inclusions in Ti-microalloyed steel by a modified coupling model [J]. J. Mater. Res. Technol., 2020, 9: 5499
4 Grange R A . Boron, Calcium, Columbium and Zirconium in Iron and Steel [M]. New York: John Wiley and Sons, 1957: 141
5 Baker T N . Role of zirconium in microalloyed steels: a review [J]. Mater. Sci. Technol., 2015, 31: 265
6 Wang H R , Wang W , Gao J Q . Precipitates in two Zr-bearing HSLA steel plates [J]. Mater. Lett., 2010, 64: 219
7 Zheng L , Yuan Z X , Song S H , et al . Austenite grain growth in heat affected zone of Zr-Ti bearing microalloyed steel [J]. J. Iron Steel Res Int., 2012, 19: 73
8 Maia A R B , Guinancio C R , Germano R L , et al . Use of zirconium in microalloyed steels [J]. Adv. Mater. Res., 2007, 59: 834
9 He K , Baker T N . Effect of zirconium additions on austenite grain coarsening of C-Mn and microalloy steels [J]. Mater. Sci. Eng., A, 1998, 256: 111
10 Shi M H , Kannan R , Zhang J , et al . Effect of Zr microalloying on austenite grain size of low-carbon steels [J]. Metall. Mater. Trans. B, 2019, 50:2574
11 Xu G , Gan X L , Ma G J , et al . The development of Ti-alloyed high strength microalloy steel [J]. Mater Des, 2010, 31:2891
12 Huo X D , Xia J N , Li L J , et al . A review of research and development on titanium microalloyed high strength steels [J]. Iron Steel Vanadium Titanium, 2017, 38: 105
12 霍向东, 夏继年, 李烈军 等 . 钛微合金化高强钢的研究与发展 [J]. 钢铁钒钛, 2017, 38: 105
13 Meng C F , Wang Y D , Wei Y H , et al . Strengthening mechanisms for Ti- and Nb-Ti-micro-alloyed high-strength steels [J]. J. Iron Steel Res. Int., 2016, 23: 350
14 Zhang K , Li Z D , Sun X J , et al . Development of Ti-V-Mo complex microalloyed Hot-Rolled 900-MPa-grade high-strength steel [J]. Acta Metall. Sin. (Fngl. Let.), 2015, 28: 641
15 Wang Z Q , Zhang H , Guo C H , et al . Effect of molybdenum addition on the precipitation of carbides in the austenite matrix of titanium micro-alloyed steels [J]. J. Mater. Sci., 2016, 51: 4996
16 Liu P C , Cao J C , Yin S B , et al . Effect of Zr on undissolved phases and carbide precipitation in Ti microalloyed low-carbon steel [J]. J. Iron Steel Res. Int., 2019, 26: 720
17 Hou L .Study on microstructure evolution and controlled rolling and controlled cooling process of titanium microalloyed steel [D]. Zhenjiang: Jiangsu University, 2017
17 侯 亮 . 钛微合金钢的组织演变规律和控轧控冷工艺研究 [D]. 镇江: 江苏大学, 2017
18 Humphreys F J , Hatherly M . Recrystallization and Related Annealing Phenomena [M]. 2nd Ed, Amsterdam: Elsevier, 2004: 215
19 Homsher C N . Determination of the non-recrystallization temperature (TNR) in multiple microalloyed steels [D]. Colorado: Colorado School of Mines, 2013
20 Yang W C . Study on dynamic recrystallization and strain-induced precipitation behavior of HG785 steel [D]. Wuhan: Wuhan University of Science and Technology, 2015
20 杨文钗 . HG785钢动态再结晶与应变诱导析出行为的研究 [D]. 武汉: 武汉科技大学, 2015
21 Zeng M , Cao J C . Effect of Zr on dynamic recrystallization behavior of Ti-microalloyed low carbon steels. Steel Res. Int., 2020, 91.
22 Yang W Y , Hu A M , Sun Z Q . Control of austenite grain size in a low carbon steel [J]. Acta Metall. Sin., 2000, 36: 1050
22 杨王明, 胡安民, 孙祖庆 . 低碳钢奥氏体晶粒尺寸的控制 [J]. 金属学报, 2000, 36: 1050
23 Yang H L , Xu G , Wang L , et al . A study of growth of austenite grains in a steel microalloyed with Ti and Nb [J]. Met. Sci. Heat Treat., 2017, 59(1-2): 8
24 Akben M J , Weiss I , Jonas J J . Dynamic precipitation and solute hardening in a V microalloyed steel and two Nb steels containing high levels of Mn [J]. Acta Metall., 1981, 29: 111
25 Zhao L Q , Zhao Y , Xu X Q , et al . Dynamic recrystallization and precipitation behavior of a kind of low carbon V-microalloyed steel [J]. Acta Metall. Sin., 2010, 46: 1215
25 陈礼清, 赵 阳, 徐香秋, 等 . 一种低碳钒微合金钢的动态再结晶与析出行为 [J]. 金属学报, 2010, 46: 1215
26 Mao X P . Titanium Microalloyed Steel [M]. Beijing: Metallurgical Industry Press, 2016: 2
26 毛新平 . 钛微合金钢 [M]. 北京: 冶金工业出版社, 2016: 2
27 Sá E R , Rodrigues S F , Aranas C , et al . Softening-precipitation interaction in a Nb-and N-bearing austenitic stainless steel under stress relaxation [J]. J. Mater. Res. Technol., 2020, 9: 7807
28 Zhang K , Sun X J , Zhang M Y , et al . Kinetics of (Ti, V, Mo)C precipitated in γ/α matrix of Ti-V-Mo complex microalloyed steel [J]. Acta Metall. Sin., 2018, 54: 1122
28 张 可, 孙新军, 张明亚 等 . Ti-V-Mo复合微合金钢中(Ti, V, Mo)C在γ/α中沉淀析出的动力学 [J]. 金属学报, 2018, 54: 1122
29 Yong Q L . Secondary Phases in Steel [M]. Beijing: Metallurgical Industry Press, 2006: 1
29 雍岐龙 . 钢铁材料中的第二相 [M]. 北京: 冶金工业出版社, 2006: 1
30 Ma X P , Miao C L , Langelier B , et al . Suppression of strain-induced precipitation of NbC by epitaxial growth of NbC on pre-existing TiN in Nb-Ti microalloyed steel [J]. Mater. Des., 2017, 132: 244
31 Gong P , Liu X G , Rijkenberg A , et al . The effect of molybdenum on interphase precipitation and microstructures in microalloyed steels containing titanium and vanadium [J]. Acta Mater., 2018, 161: 374
32 Strid J , Easterling K E . On the chemistry and stability of complex carbides and nitrides in microalloyed steels [J]. Acta Metall., 1985, 33: 2057
33 Wang F M , Han Q Y . Formation mechanism of complex microalloying carbonitride in steels [J]. Iron Steel, 1995, 30: 50
33 王福明, 韩其勇 . 钢中微合金碳氮化物复合相的形成机制 [J]. 钢铁, 1995, 30: 50
34 Wang F L . Study on precipitation behaviors of V and Nb in microalloyed steel bars [D]. Chongqing: Chongqing University, 2016
34 王方丽 . 微合金化钢筋中V、Nb析出行为研究 [D]. 重庆: 重庆大学, 2016
35 Feng R , Li S L , Li Z S , et al . Characteristics of diphase precipitates of Nb-V-Ti microalloyed steel [J]. Trans. Mater. Heat Treat., 2013, 34: 37
35 冯 锐, 李胜利, 李贞顺 等 . Nb-V-Ti微合金钢复合析出相的特征 [J]. 材料热处理学报, 2013, 34: 37
36 Jang J H , Lee C H , Heo Y U , et al . Stability of (Ti,M)C (M=Nb, V, Mo and W) carbide in steels using first-principles calculations [J]. Acta Mater., 2011, 60: 208
[1] 毛建军, 富童, 潘虎成, 滕常青, 张伟, 谢东升, 吴璐. AlNbMoZrB系难熔高熵合金的Kr离子辐照损伤行为[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] 赵政翔, 廖露海, 徐芳泓, 张威, 李静媛. 超级奥氏体不锈钢24Cr-22Ni-7Mo-0.4N的热变形行为及其组织演变[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] 幸定琴, 涂坚, 罗森, 周志明. C含量对VCoNi中熵合金微观组织和性能的影响[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] 欧阳康昕, 周达, 杨宇帆, 张磊. LPSOMg-Y-Er-Ni合金的组织和拉伸性能[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] 徐利君, 郑策, 冯小辉, 黄秋燕, 李应举, 杨院生. 定向再结晶对热轧态Cu71Al18Mn11合金的组织和超弹性性能的影响[J]. 材料研究学报, 2023, 37(8): 571-580.
[8] 熊诗琪, 刘恩泽, 谭政, 宁礼奎, 佟健, 郑志, 李海英. 固溶处理对一种低偏析高温合金组织的影响[J]. 材料研究学报, 2023, 37(8): 603-613.
[9] 刘继浩, 迟宏宵, 武会宾, 马党参, 周健, 徐辉霞. 喷射成形M3高速钢热处理过程中组织的演变和硬度偏低问题[J]. 材料研究学报, 2023, 37(8): 625-632.
[10] 由宝栋, 朱明伟, 杨鹏举, 何杰. 合金相分离制备多孔金属材料的研究进展[J]. 材料研究学报, 2023, 37(8): 561-570.
[11] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[12] 王昊, 崔君军, 赵明久. 镍基高温合金GH3536带箔材的再结晶与晶粒长大行为[J]. 材料研究学报, 2023, 37(7): 535-542.
[13] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.
[14] 秦鹤勇, 李振团, 赵光普, 张文云, 张晓敏. 固溶温度对GH4742合金力学性能及γ' 相的影响[J]. 材料研究学报, 2023, 37(7): 502-510.
[15] 刘天福, 张滨, 张均锋, 徐强, 宋竹满, 张广平. 缺口应力集中系数对TC4 ELI合金低周疲劳性能的影响[J]. 材料研究学报, 2023, 37(7): 511-522.