Please wait a minute...
材料研究学报  2022, Vol. 36 Issue (1): 73-80    DOI: 10.11901/1005.3093.2020.490
  研究论文 本期目录 | 过刊浏览 |
环氧大豆油化学接枝聚乳酸的制备及其性能
蔡垚1, 吴红枚1(), 刘武2, 李端1, 范诗易1, 王洋洋1
1.南华大学化学化工学院 衡阳 421000
2.东莞市汇林新材料科技有限公司 东莞 523000
Preparation and Properties of Polylactic Acid Chemically Grafted with Epoxidized Soybean Oil
CAI Yao1, WU Hongmei1(), LIU Wu2, LI Duan1, FAN Shiyi1, WANG Yangyang1
1.College of Chemistry and Chemical Engineering, University of South China, Hengyang 421000, China
2.Dongguan Huilin New Material Technology Co. Ltd. , Dongguan 523000, China
引用本文:

蔡垚, 吴红枚, 刘武, 李端, 范诗易, 王洋洋. 环氧大豆油化学接枝聚乳酸的制备及其性能[J]. 材料研究学报, 2022, 36(1): 73-80.
Yao CAI, Hongmei WU, Wu LIU, Duan LI, Shiyi FAN, Yangyang WANG. Preparation and Properties of Polylactic Acid Chemically Grafted with Epoxidized Soybean Oil[J]. Chinese Journal of Materials Research, 2022, 36(1): 73-80.

全文: PDF(3391 KB)   HTML
摘要: 

用化学改性方式将环氧大豆油(ESO)与用马来酸酐(MAH)改性过的PLA接枝(MPLA),制备了反应性增容剂ECP并提出其可能的接枝机理。用FT-IR、DSC、SEM等手段表征ECP,研究了制备ECP时4种加料方式和ESO与MAH基团的摩尔比对其接枝率和酸值的影响。结果表明:在MPLA阶段先加入1/3配方比的ESO,在化学接枝阶段加入剩余的ESO和全部的三乙胺,制备出的ECP接枝率最高达4.1514%;ESO与MAH基团的摩尔比为1时产物的接枝效果最好。ECP改性的PLA材料其综合性能优于ESO改性的PLA材料,ECP的加入使PLA的疏水性能提高。

关键词 复合材料化学接枝改性环氧大豆油    
Abstract

Maleic anhydride (MAH) grafted polylactic acid (PLA), namely MPLA was made via melting reaction method. Then reactive compatilizer ESO-G-(MAH-co-PLA) (ECP) was further prepared via chemical graft of epoxidized soybean oil (ESO) and MPLA.The prepared ECP was characterized by FT-IR, DSC and SEM. The influence of four different feeding methods and mole ratio between ESO and MAH on graft rate and acid value of ECP was investigated. The results show that during the MPLA preparation stage, 1/3 of the desired amount ESO was added first, and subsequently the remaining 2/3 of ESO and all triethylamine were added at the chemical graft stage, as a result the grafting rate of ECP was up to 4.1514%;When the mole ratio of ESO to MAH group is 1, the grafting effect of products is the best. The PLA material modified with ECP has better comprehensive performance than the one with ESO. The addition of ECP can improve the hydrophobic performance of PLA.

Key wordscomposite    chemical grafting    modification    epoxidized soybean oil
收稿日期: 2020-11-17     
ZTFLH:  TQ317  
基金资助:国家自然科学基金(21104031);湖南省2020年度教育厅科学研究项目(20C1589)
作者简介: 蔡垚,女,1996年生,硕士生
SamplesPLA/%, mass fractionESO/%TEA/%
ESO0.3-TEA0.3 MPLA1000.30.3
ESO0.3-TEA0 MPLA1000.30
ESO0-TEA0 MPLA10000
ESO0-TEA0.3 MPLA10000.3
表1  MPLA母料配方表
SamplesMPLA/% ,mass fractionESO/%TEA/%
ESO0.3-TEA0.3 ECP1000.70.7
ESO0.3-TEA0 ECP1000.71
ESO0-TEA0 ECP10011
ESO0-TEA0.3 ECP10010.7
表2  ECP产品配方表
图1  样品的红外光谱
SamplesTg/℃TCC/℃Tm/℃ΔCp/J·g-1·KΔHC/J·g-1ΔHm/J·g-1χc/%
ESO0.3-TEA0.3 MPLA58.6113.2169.60.52239.0538.381.52
ESO0.3-TEA0 MPLA57.0107.5168.50.45631.1328.323.00
ESO0-TEA0 MPLA60.3111.3168.00.57126.5429.933.63
ESO0-TEA0.3 MPLA59.8100.8168.60.54127.3631.284.19
Neat PLA60.5102.9169.30.55634.6336.091.57
ESO0.3-TEA0.3 ECP56.5104.0167.90.50534.6035.310.75
ESO0.3-TEA0 ECP59.1110.5169.40.51736.6736.080.63
ESO0-TEA0 ECP57.698.3168.20.50636.3644.378.57
ESO0-TEA0.3 ECP58.7100.5168.50.55437.4841.264.04
1n ECP59.1110.5169.40.51736.6736.080.63
1.5n ECP60.1105.1169.50.47038.0333.724.61
2n ECP59.2104.6168.40.49634.6832.802.01
表3  样品的热性能
图2  样品的DSC曲线
SamplesAcid value /(mg KOH/g)Grafting rate/%
ESO0.3-TEA0.3 MPLA2.412.60
ESO0.3-TEA0 MPLA2.040.76
ESO0-TEA0 MPLA2.271.88
ESO0-TEA0.3 MPLA1.920.19
Neat PLA1.880
ESO0.3-TEA0.3 ECP2.523.10
ESO0.3-TEA0 ECP2.734.15
ESO0-TEA0 ECP2.623.62
ESO0-TEA0.3 ECP2.523.10
1n ECP2.734.15
1.5n ECP2.492.99
2n ECP2.422.63
表4  样品的酸值和接枝率
图3  各样品的扫描电镜图
图4  Neat PLA、PLA/ESO和PLA/ECP的综合性能
1 Sangeetha V H, Deka H, Varghese T O, et al. State of the art and future prospectives of poly(lactic acid) based blends and composites [J]. Polym. Compos., 2018, 39: 81
2 Wang M, Wu Y, Li Y D, et al. Progress in toughening poly(lactic acid) with renewable polymers [J]. Polym. Rev., 2017, 57: 557
3 Balakrishnan H, Hassan A, Imran M, et al. Toughening of polylactic acid nanocomposites: a short review [J]. Polym. Plast. Technol. Eng., 2012, 51: 175
4 Zhang M, Jia H, Weng Y X, et al. Biodegradable PLA/PBAT mulch on microbial community structure in different soils [J]. Int. Biodeterior. Biodegradation, 2019, 145: 104817
5 Saini P, Arora M, Kumar M N V. Poly(lactic acid) blends in biomedical applications [J]. Adv. Drug Deliv. Rev., 2016, 107: 47
6 Nampoothiri K M, Nair N R, John R P. An overview of the recent developments in polylactide (PLA) research [J]. Bioresour. Technol., 2010, 101: 8493
7 Maiza M, Benaniba M T, Quintard G, et al. Biobased additive plasticizing Polylactic acid (PLA) [J]. Polímeros, 2015, 25: 581
8 Yuan W Q, Zhang H, Weng Y X, et al. Fully biobased polylactide/epoxidized soybean oil resin blends with balanced stiffness and toughness by dynamic vulcanization [J]. Polym. Test., 2019, 78: 105981
9 Przybytek A, Sienkiewicz M, Kucińska-Lipka J, et al. Preparation and characterization of biodegradable and compostable PLA/TPS/ESO compositions [J]. Ind. Crops Prod., 2018, 122: 375
10 Wang X Z, He J, Weng Y X, et al. Structure-property relationship in fully biobased epoxidized soybean oil thermosets cured by dicarboxyl terminated polyamide 1010 oligomer with different carboxyl/epoxy ratios [J]. Polym. Test., 2019, 79: 106057
11 Zhao T H, Yuan W Q, Li Y D, et al. Relating chemical structure to toughness via morphology control in fully sustainable sebacic acid cured epoxidized soybean oil toughened polylactide blends [J]. Macromolecules, 2018, 51: 2027
12 Liu W D, Qiu J H, Zhu L X, et al. Tannic acid-induced crosslinking of epoxidized soybean oil for toughening poly(lactic acid) via dynamic vulcanization [J]. Polymer, 2018, 148: 109
13 Gong X H, Xin M H, Li M C, et al. Study on preparation and properties of PLA/TW biocomposites plasticized with ESO [J]. Plast. Sci. Technol., 2019, 47(4): 54
13 龚新怀, 辛梅华, 李明春等. 环氧大豆油增塑聚乳酸/茶渣生物质复合材料的制备与性能研究 [J]. 塑料科技, 2019, 47(4): 54
14 Wang X M, Liu D Z. Study on the graftting yield of maleic anhydride grafted chlorinated polypropylene by neutralization titration [J]. Eng. Plast. Appl., 2009, 37(1): 52
14 王学敏, 刘大壮. 酸碱滴定法测定马来酸酐接枝氯化聚丙烯的接枝率 [J]. 工程塑料应用, 2009, 37(1): 52
15 Hou W L, Yang T, Yang Y D. Infrared spectrometric and thermogravimetric analysis of maleoyl chitosan [J]. Phys. Test. Chem. Anal., 2013, 49B: 1163
15 侯文龙, 杨 婷, 杨越冬. 马来酰化壳聚糖的红外光谱与热重分析 [J]. 理化检验(化学分册), 2013, 49: 1163
16 Xiong Z, Yang Y, Feng J X, et al. Preparation and characterization of poly(lactic acid)/starch composites toughened with epoxidized soybean oil [J]. Carbohydr. Polym., 2013, 92: 810
17 Hassouna F, Raquez J M, Addiego F, et al. New development on plasticized poly(lactide): Chemical grafting of citrate on PLA by reactive extrusion [J]. Eur. Polym. J., 2012, 48: 404
18 Santonja-Blasco L, Ribes-Greus A, Alamo R G. Comparative thermal, biological and photodegradation kinetics of polylactide and effect on crystallization rates [J]. Polym. Degrad. Stabil., 2013, 98: 771
19 Li H Y, Lu X P, Yang H, et al. Crystallization and melting of bacterial cellulose/polylactic acid composites with interpenetrating network [J]. Acta Mater. Compos. Sin., 2015, 32: 1294
19 李红月, 卢秀萍, 杨 华等. 细菌纤维素/聚乳酸互穿网络复合材料的结晶与熔融 [J]. 复合材料学报, 2015, 32: 1294
20 Ma L L, Shao J, Yang C G, et al. Synthesis and property of PDLA-PBS-PDLA tri-block copolymer [J]. Chem. J. Chin. Univ., 2015, 36: 2329
20 马丽莉, 邵 俊, 杨晨光等. PDLA-PBS-PDLA三嵌段共聚物的合成及性能 [J]. 高等学校化学学报, 2015, 36: 2329
[1] 潘新元, 蒋津, 任云飞, 刘莉, 李景辉, 张明亚. 热挤压钛/钢复合管的微观组织和性能[J]. 材料研究学报, 2023, 37(9): 713-720.
[2] 王乾, 蒲磊, 贾彩霞, 李志歆, 李俊. 碳纤维/环氧复合材料界面改性的不均匀性[J]. 材料研究学报, 2023, 37(9): 668-674.
[3] 刘瑞峰, 仙运昌, 赵瑞, 周印梅, 王文先. 钛合金/不锈钢复合板的放电等离子烧结技术制备及其性能[J]. 材料研究学报, 2023, 37(8): 581-589.
[4] 季雨辰, 刘树和, 张天宇, 查成. MXene在锂硫电池中应用的研究进展[J]. 材料研究学报, 2023, 37(7): 481-494.
[5] 王伟, 解泽磊, 屈怡珅, 常文娟, 彭怡晴, 金杰, 王快社. Graphene/SiO2 纳米复合材料作为水基润滑添加剂的摩擦学性能[J]. 材料研究学报, 2023, 37(7): 543-553.
[6] 张藤心, 王函, 郝亚斌, 张建岗, 孙新阳, 曾尤. 基于界面氢键结构的石墨烯/聚合物复合材料的阻尼性能[J]. 材料研究学报, 2023, 37(6): 401-407.
[7] 李林龙, 杨丽琪, 薛伟海, 高禩洋, 王旭, 段德莉, 李曙. 稀土改性GCr15钢与保持架材料间的滑动摩擦磨损[J]. 材料研究学报, 2023, 37(6): 408-416.
[8] 邵萌萌, 陈招科, 熊翔, 曾毅, 王铎, 王徐辉. C/C-ZrC-SiC复合材料的Si2+ 离子辐照行为[J]. 材料研究学报, 2023, 37(6): 472-480.
[9] 张锦中, 刘晓云, 杨健茂, 周剑锋, 查刘生. 温度响应性双面纳米纤维的制备和性能[J]. 材料研究学报, 2023, 37(4): 248-256.
[10] 王刚, 杜雷雷, 缪自强, 钱凯成, 杜向博文, 邓泽婷, 李仁宏. 聚多巴胺改性碳纤维增强尼龙6复合材料的界面性能[J]. 材料研究学报, 2023, 37(3): 203-210.
[11] 林师峰, 徐东安, 庄艳歆, 张海峰, 朱正旺. TiZr基非晶/TC21双层复合材料的制备和力学性能[J]. 材料研究学报, 2023, 37(3): 193-202.
[12] 苗琪, 左孝青, 周芸, 王应武, 郭路, 王坦, 黄蓓. 304不锈钢纤维/ZL104铝合金复合泡沫的孔结构、力学、吸声性能及其机理[J]. 材料研究学报, 2023, 37(3): 175-183.
[13] 张开银, 王秋玲, 向军. FeCo/SnO2 复合纳米纤维的制备及其吸波性能[J]. 材料研究学报, 2023, 37(2): 102-110.
[14] 周聪, 昝宇宁, 王东, 王全兆, 肖伯律, 马宗义. (Al11La3+Al2O3)/Al复合材料的高温性能及其强化机制[J]. 材料研究学报, 2023, 37(2): 81-88.
[15] 罗昱, 陈秋云, 薛丽红, 张五星, 严有为. 钠离子电池双层碳包覆Na3V2(PO4)3 正极材料的超声辅助溶液燃烧合成及其电化学性能[J]. 材料研究学报, 2023, 37(2): 129-135.