Please wait a minute...
材料研究学报  2021, Vol. 35 Issue (8): 583-590    DOI: 10.11901/1005.3093.2020.569
  研究论文 本期目录 | 过刊浏览 |
Ti-6Al-4V合金热压缩过程中的动态再结晶
刘超1, 王鑫1, 门月1, 张浩宇1, 张思倩1, 周舸1(), 陈立佳1, 刘海建2
1.沈阳工业大学材料科学与工程学院 沈阳 110870
2.上海航天精密机械研究所 上海 201600
Dynamic Recrystallization of Ti-6Al-4V Alloy During Hot Compression
LIU Chao1, WANG Xin1, MEN Yue1, ZHANG Haoyu1, ZHANG Siqian1, ZHOU Ge1(), CHEN Lijia1, LIU Haijian2
1.School of Materials Science and Engineering, Shenyang University of Technology, Shenyang 110870, China
2.Shanghai Spaceflight Precision Machinery Institute, Shanghai 201600, China
引用本文:

刘超, 王鑫, 门月, 张浩宇, 张思倩, 周舸, 陈立佳, 刘海建. Ti-6Al-4V合金热压缩过程中的动态再结晶[J]. 材料研究学报, 2021, 35(8): 583-590.
Chao LIU, Xin WANG, Yue MEN, Haoyu ZHANG, Siqian ZHANG, Ge ZHOU, Lijia CHEN, Haijian LIU. Dynamic Recrystallization of Ti-6Al-4V Alloy During Hot Compression[J]. Chinese Journal of Materials Research, 2021, 35(8): 583-590.

全文: PDF(12830 KB)   HTML
摘要: 

在变形温度为870~960℃、应变速率为5×10-4 s-1~5×10-2 s-1的条件下对Ti-6Al-4V合金进行单道次等温压缩实验,测出其应力-应变曲线并建立KM模型、Poliak-Jonas模型和Avrami模型,较为系统地描述了这种合金动态再结晶过程中的流变应力、临界应变量、组织演变动力学等的特征。将动态再结晶组织的转变体积分数引入Prasad功率耗散率模型,得到了Ti-6Al-4V合金动态再结晶过程中能量的变化规律并结合微观组织表征揭示了这种合金的动态再结晶机理。结果表明:随着变形温度的提高和应变速率的降低,Ti-6Al-4V合金的动态再结晶临界应变量减小,组织转变的体积分数增大。发生完全动态再结晶时的功率耗散率大于0.34,形核机制为位错诱导的弓出形核机制。

关键词 金属材料Ti-6Al-4V合金动态再结晶物理模型热压缩变形微观组织    
Abstract

The stress-strain curves of Ti-6Al-4V alloy during hot deformation by applied strain rate within the range of 5×10-4~5×10-2 s-1 at 870~960°C were measured via single-pass isothermal compression test. The dynamics characteristics of rheological stress, critical strain capacity and structure evolution of the alloy during dynamic recrystallization were systematically illustrated by means of KM model, Poliak-Jonas model, and Avrami model. Then a concept of volume fraction of the microstructure transformation, i.e., the portion of the alloy that has been underwent microstructure transformation during dynamic recrystallization, was introduced into the so called prasad power dissipation rate model, thus the energy variation of the alloy during dynamic recrystallization was acquired. Further, taking both of the acquired energy variation and the observed microstructure evolution characteristics together into consideration, the dynamic recrystallization mechanism of Ti-6Al-4V alloy may be revealed. It follows that the critical strain capacity of Ti-6Al-4V during dynamic recrystallization decreased and the structural transformation volume fraction increased following the rise of deformation temperature or the decline of strain rate. The power dissipation rate upon complete dynamic recrystallization is larger than 0.34, and the forming mechanism is a dislocation-induced arcuation nucleation mechanism.

Key wordsmetallic materials    Ti-6Al-4V    dynamic recrystallization    physical models    hot compression deformation    microstructure
收稿日期: 2020-12-28     
ZTFLH:  TG146.23  
基金资助:国家自然科学基金(51805335)
作者简介: 刘超,男,1994年生,硕士
图1  Ti-6Al-4V合金在不同温度变形的真应力-应变曲线
ParametersValueParametersValue
b0-12.9616b50.48118
b1-0.5318b60.03365
b2-0.05727b723.7294
b30.0309b81.02584
b40.81679
表1  Ti-6Al-4V合金本构关系模型的参数
图2  Ti-6Al-4V合金不同应变速率下-??(lnθ)/??ε与ε的关系
Strain rate/s-1εc
870℃900℃930℃960℃
5×10-40.30890.29360.27240.2536
1×10-30.31770.29910.28720.2701
5×10-30.33020.31560.30070.2841
5×10-20.34980.33010.31910.2951
表2  Ti-6Al-4V合金动态再结晶临界应变值(εc)
图3  Ti-6Al-4V合金的动态再结晶临界应变量关系
图4  Ti-6Al-4V合金在不同条件下动态再结晶体积分数Xd的演化
图5  Ti-6Al-4V合金动态再结晶功率耗散率的分布
图6  Ti-6Al-4V合金的金相照片
图7  Ti-6Al-4V合金的TEM照片
1 Salishchev G A, Aliyev R M, Valiakhmetov O R. Development of Ti-6Al-4V sheet with low temperature superplastic properties [J]. J. Mater. Process. Tech., 2001, 116(23): 265
2 Lee J H, Song Y J, Shin D H. Microstructural evolution during superplastic bulge forming of Ti-6Al-4V alloy [J]. Mater. Sci. Eng. A., 1998, 243(2): 119
3 Huang Z H, Qu HL, Deng C, et al. Development and application of aerial titanium and its alloys [J]. Mater. Rev., 2011, 25(1): 102
3 黄张洪, 曲恒磊, 邓超等. 航空用钛及钛合金的发展及应用 [J]. 材料导报, 2011, 25(1): 102
4 Jin H X, Wei K X, Li J M, et al. Research development of titanium alloy in aerospace industry [J]. Chin. J. Nonferrous. Met., 2015, 25(2): 280
4 金和喜, 魏克湘, 李建明等. 航空用钛合金研究进展 [J]. 中国有色金属学报, 2015, 25(2): 280
5 Yang B W, Xue Y, Zhang Y M, et al. Study on high temperature deformation behavior of HIP TC4 titanium alloy [J]. Hot. Working. Tech., 2018, 47(23): 46
5 杨博文, 薛勇, 张治民等. 热等静压态TC4钛合金高温变形行为研究 [J]. 热加工工艺, 2018, 47(23): 46
6 Zhang Z M, Ren L Y, Xue Y, et al. Microstructure of hot isostatically pressed Ti-6A1-4V alloy after hot deformation [J]. Rare. Metal. Mat. Eng., 2019, 48(3): 820
6 张治民, 任璐英, 薛勇等. 热等静压Ti-6Al-4V钛合金热变形微观组织演变 [J]. 稀有金属材料与工程, 2019, 48(3): 820
7 Hamed S, Langdon T G. Using heat treatments,high-pressure torsion and post-deformation annealing to optimize the properties of Ti-6Al-4V alloys [J]. Acta. Mater, 2017, 141: 419
8 Megumi K, Langdon T G. The contribution of severe plastic deformation to research on superplasticity [J]. Mater. Trans., 2019, 60(7): 1123
9 Kawasaki M, Figueiredo R B, Langdon T G. Recent developments in the processing of advanced materials using severe plastic deformation [J]. Mater. Sci. Forum., 2020, 72: 3304
10 Kawasaki M, Langdon T G. Superplasticity in ultrafine-grained materials [J]. Rev. Adv. Mater. Sci., 2018, 54(1): 46
11 Zhang S, Wang Y C, Zhilyaev A P, et al. Temperature and strain rate dependence of microstructural evolution and dynamic mechanical behavior in nanocrystalline Ti [J]. Mater. Sci. Eng. A., 2015, 641: 29
12 Zhang J Y. Study on fine crystal heat treatment diagram and dynamic recrystallization behavior of TC4 titanium alloy [D]. Xi'an: Xi'an University of Architecture and Technology, 2019
12 张君彦. 细晶TC4钛合金的热加工图及动态再结晶行为研究 [D]. 西安: 西安建筑科技大学, 2019
13 Yang L Q, Yang Y Q. Deformed microstructure and texture of Ti6Al4V alloy [J]. T. Nonfree. Metal. Soc., 2014, 24(10): 3103
13 杨柳青, 杨延清. Ti6Al4V钛合金的变形组织及织构 [J]. 中国有色金属学报(英文版), 2014, 24(10): 3103
14 Zhong X T, Huang L K, Wang L, et al. A discontinuous dynamic recrystallization model incorporating characteristics of initial microstructure [J]. T. Nonfree. Metal. Soc., 2018, 28(11): 2294
15 Hanlon D N, Sietsma J, Zwaag S V D. The effect of plastic deformation of austenite on the kinetics of subsequent ferrite formation [J]. Trans. Iron. Steel IOJ., 2001, 41(9): 1028
16 Estrin Y, Mecking H. A unified phenomenological description of work hardening and creep based on one-parameter models [J]. Acta. Metall., 1984, 32(1): 57
17 Poliak E I, Jonas J J. A one-parameter approach to determining the critical conditions for the initiation of dynamic recrystallization [J]. Acta Mater., 1996, 44(1): 127
18 Mcqueen H J, Blum W. Dynamic recovery: sufficient mechanism in the hot deformation of Al (<99.99) [J]. Mater. Sci. Eng. A., 2000, 290(1-2): 95
19 Prasad Y V R K, Seshacharyulu T. Processing maps for hot working of titanium alloys [J]. Mater. Sci. Eng. A., 1998, 243(1~2): 82
[1] 毛建军, 富童, 潘虎成, 滕常青, 张伟, 谢东升, 吴璐. AlNbMoZrB系难熔高熵合金的Kr离子辐照损伤行为[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] 赵政翔, 廖露海, 徐芳泓, 张威, 李静媛. 超级奥氏体不锈钢24Cr-22Ni-7Mo-0.4N的热变形行为及其组织演变[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] 幸定琴, 涂坚, 罗森, 周志明. C含量对VCoNi中熵合金微观组织和性能的影响[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] 欧阳康昕, 周达, 杨宇帆, 张磊. LPSOMg-Y-Er-Ni合金的组织和拉伸性能[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] 徐利君, 郑策, 冯小辉, 黄秋燕, 李应举, 杨院生. 定向再结晶对热轧态Cu71Al18Mn11合金的组织和超弹性性能的影响[J]. 材料研究学报, 2023, 37(8): 571-580.
[8] 熊诗琪, 刘恩泽, 谭政, 宁礼奎, 佟健, 郑志, 李海英. 固溶处理对一种低偏析高温合金组织的影响[J]. 材料研究学报, 2023, 37(8): 603-613.
[9] 刘继浩, 迟宏宵, 武会宾, 马党参, 周健, 徐辉霞. 喷射成形M3高速钢热处理过程中组织的演变和硬度偏低问题[J]. 材料研究学报, 2023, 37(8): 625-632.
[10] 由宝栋, 朱明伟, 杨鹏举, 何杰. 合金相分离制备多孔金属材料的研究进展[J]. 材料研究学报, 2023, 37(8): 561-570.
[11] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[12] 王昊, 崔君军, 赵明久. 镍基高温合金GH3536带箔材的再结晶与晶粒长大行为[J]. 材料研究学报, 2023, 37(7): 535-542.
[13] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.
[14] 秦鹤勇, 李振团, 赵光普, 张文云, 张晓敏. 固溶温度对GH4742合金力学性能及γ' 相的影响[J]. 材料研究学报, 2023, 37(7): 502-510.
[15] 刘天福, 张滨, 张均锋, 徐强, 宋竹满, 张广平. 缺口应力集中系数对TC4 ELI合金低周疲劳性能的影响[J]. 材料研究学报, 2023, 37(7): 511-522.