Please wait a minute...
材料研究学报  2021, Vol. 35 Issue (8): 561-571    DOI: 10.11901/1005.3093.2020.541
  研究论文 本期目录 | 过刊浏览 |
CoCuFeNiTi高熵合金涂层的制备和性能研究
王根, 李新梅(), 卢彩彬, 王松臣, 柴程
新疆大学机械工程学院 乌鲁木齐 830047
Preparation and Properties of CoCuFeNiTi High Entropy Alloy Coating
WANG Gen, LI Xinmei(), LU Caibin, WANG Songchen, CHAI Cheng
College of Mechanical Engineering, Xinjiang University, Urumqi 830047, China
引用本文:

王根, 李新梅, 卢彩彬, 王松臣, 柴程. CoCuFeNiTi高熵合金涂层的制备和性能研究[J]. 材料研究学报, 2021, 35(8): 561-571.
Gen WANG, Xinmei LI, Caibin LU, Songchen WANG, Cheng CHAI. Preparation and Properties of CoCuFeNiTi High Entropy Alloy Coating[J]. Chinese Journal of Materials Research, 2021, 35(8): 561-571.

全文: PDF(9378 KB)   HTML
摘要: 

采用激光熔覆技术在40 Cr钢基材表面制备CoCuFeNiTi高熵合金涂层,使用SEM、XRD和EDS等手段分析涂层的显微组织和相组成,研究了涂层的制备工艺、显微硬度、耐磨损和耐腐蚀性能。结果表明:在激光功率为700 W、扫描速度为6 mm/s条件下制备的CoCuFeNiTi高熵合金涂层表面质量较好,涂层与基体之间形成了良好的冶金结合;这种涂层由FCC相、少量的Cu4Ti相和微纳级富Cu析出相构成,具有典型的树枝晶显微组织,Cu元素在枝晶间偏聚并形成微纳级富Cu析出相;涂层的显微硬度约为438.83HV,是基体的1.7倍;涂层的磨损质量损失约为基体的1/2,表明这种涂层具有更高的耐磨损性能。涂层的磨损,以黏着磨损为主伴有一定程度的磨粒磨损;这种涂层在pH=4的酸性溶液和3.5%NaCl溶液中的耐蚀性均优于基体。

关键词 金属材料高熵合金电化学腐蚀磨损    
Abstract

The CoCuFeNiTi high entropy alloy coating was prepared by laser cladding technology on the surface of 40 Cr steel, which then was characterized by means of SEM, XRD and EDS, as well as microhardness tester, wear resistance and corrosion resistance test. The results show that among others the coating prepared by laser beam with power of 700 W and scanning speed of 6 mm/s presents the best in surface quality and metallurgical bonding between the coating and the substrate. The coating is mainly composed of FCC phase, a small amount of Cu4Ti phase and nano precipitates rich in Cu. The microstructure of the coating shows typical dendrite structure, while Cu segregated in between dendrites as micro- and/or nano-particulates rich in Cu. The microhardness of the coating is 438.83HV, which is 1.7 times that of 40 Cr steel. The wear mass loss of the coating is about 1/2 that of 40 Cr steel, indicating the coating has better wear resistance. The wear of the coating is mainly adhesive wear, accompanied by a certain degree of abrasive grain wear. The corrosion resistance of the coating in acidic medium of pH=4 and 3.5%NaCl solution was better than that of 40 Cr steel.

Key wordsmetallic materials    high entropy alloy    electrochemical corrosion    wear
收稿日期: 2020-12-21     
ZTFLH:  TL214+.6  
基金资助:国家自然科学基金(51865055);新疆自治区天山英才计划(201720025);新疆自治区研究生创新项目(XJ2020G051)
作者简介: 王根,男,1996年生,硕士生
Scanning speed/mm·s-16
Laser power/W5006007008009001000
表1  激光功率单因素试验表
Laser power/W700
Scanning speed/mm·s-14567
表2  扫描速度单因素试验表
图1  激光功率不同的单道涂层
图2  不同激光功率涂层的截面形貌
图3  激光扫描速度不同的单道涂层
图4  不同激光扫描速度涂层的截面形貌
图5  预置层粉末和CoCuFeNiTi高熵合金涂层的XRD谱
图6  CoCuFeNiTi高熵合金涂层的显微组织
图7  CoCuFeNiTi高熵合金涂层中各元素的分布
CoCuFeNiTi
Co6-10-28
Cu134-9
Fe-2-17
Ni-36
Ti
表3  各元素之间的混合焓(kJ·mol-1)[23]
图8  CoCuFeNiTi高熵合金涂层显微硬度的分布
图9  热影响区的显微组织
图10  CoCuFeNiTi高熵合金涂层和基体的磨损质量损失
图11  CoCuFeNiTi高熵合金涂层的磨损形貌
图12  CoCuFeNiTi高熵合金涂层和基体在不同腐蚀溶液中的极化曲线
pH=4 acidic solution3.5%NaCl solution
Ecorr/VI/mA·mm-2Ecorr/VIcorr/mA·mm-2Ep/VIpass/mA·mm-2
Matrix-0.5677.304×10-3-0.4652.890×10-40.1421.467×10-3
Coating-0.3715.556×10-3-0.3951.600×10-40.2254.307×10-4
表4  基体和CoCuFeNiTi高熵合金涂层在不同腐蚀介质中的Ecorr,Icorr,Ep和Ipass
图13  CoCuFeNiTi高熵合金涂层和基体在pH=4酸性溶液中的腐蚀形貌
图14  CoCuFeNiTi高熵合金涂层和基体在3.5%NaCl溶液中的腐蚀形貌
1 Liu Q, Wang X Y, Huang Y B, et al. Effect of molybdenum content on microstructure and corrosion resistance of CoCrFeNiMo high entropy [J]. Chinese Journal of Materials Research, 2020, 34(11): 868
1 刘谦, 王昕阳, 黄燕滨等. Mo含量对CoCrFeNiMo高熵合金组织及耐蚀性能的影响 [J]. 材料研究学报, 2020, 34(11): 868
2 Park T, Kim J H. Tensile properties and microstructure evolution during two-stage tensile testing of CoCrFeMnNi high-entropy alloy [J]. Journal of Materials Research and Technology, 2020, 9(4): 7551
3 Yang F, Dong L, Hu X, et al. Microstructural features and tensile behaviors of a novel FeMnCoCr high entropy alloys [J]. Materials Letters, 2020, 275: 128154
4 Shi P, Yu Y, Xiong N, et al. Microstructure and tribological behavior of a novel atmospheric plasma sprayed AlCoCrFeNi high entropy alloy matrix self-lubricating composite coatings [J]. Tribology International, 2020, 151: 106470
5 Wang H, Wang Z H. Microstructure and properties of AlxCoCrFeNi high-entropy alloys prepared by plasma cladding [J]. Materials Reports, 2018, 32(4): 78
5 王虎, 王智慧. 等离子熔覆法制备AlxCoCrFeNi高熵合金微观组织与性能研究 [J]. 材料导报, 2018, 32(4): 78
6 Wang Y D, Zhang X R, Cui X F, et al. Effects of laser energy density on microstructure and corrosion resistance of NiCrCoTiV high entropy [J]. Surface Technology, 2019(6): 118
6 王一丹, 张学润, 崔秀芳等. 激光能量密度对NiCrCoTiV高熵合金涂层组织结构及耐蚀性能的影响 [J]. 表面技术, 2019(6): 118
7 Zhang L T, Liu D X, Zhang W Q, et al. Research progress of laser cladding coating on titanium alloy surface [J]. Surface Technology, 2020, 49(8): 97
7 张蕾涛, 刘德鑫, 张伟樯等. 钛合金表面激光熔覆涂层的研究进展 [J]. 表面技术, 2020, 49(8): 97
8 Zhu H M, Hu J P, Li B C, et al. Research progress of laser cladding stainless steel coating on fe-based substrate [J]. Surface Technology, 2020(3): 74
8 朱红梅, 胡际鹏, 李柏春等. 铁基材料表面激光熔覆不锈钢涂层的研究进展 [J]. 表面技术, 2020(3): 74
9 Zhang F Z, Sun W L, Wang K D, et al. Optimization of laser cladding repair process parameters for thin-wall parts [J]. Surface Technology, 2019, 48(1): 168
9 张富祯, 孙文磊, 王恪典等. 面向薄壁件的激光熔覆修复工艺参数优化研究 [J]. 表面技术, 2019, 48(1): 168
10 Wang G, Li X M, Wang S C. Research progress of various kinds of high entropy alloys [J]. Journal of Functional Materials, 2019, 50(12): 12035
10 王根, 李新梅, 王松臣. 各类高熵合金的研究进展 [J]. 功能材料, 2019, 50(12): 12035
11 Liu L, Wang C M, Sun H F, et al. AlFeCrNiTiCux high-entropy alloy coatings fabricated by laser cladding [J]. Journal of Shandong University of Science and Technology(Natural Science), 2018, 37(02): 74
11 刘亮, 王灿明, 孙宏飞等.激光熔覆AlFeCrNiTiCux系高熵合金涂层 [J]. 山东科技大学学报(自然科学版), 2018, 37(02): 74
12 Li D L, Zhou F, Yu S H. Microstrucrure and corrosion resistance of FeCrNiMnMoxB0.5 high entropy alloy coating prepared by laser cladding [J]. High Power Laser and Particle Beams, 2016, 28(2): 196
12 李栋梁, 周芳, 余师豪.激光熔覆FeCrNiMnMoxB(0.5)高熵合金涂层组织与耐蚀性能 [J]. 强激光与粒子束, 2016, 28(2): 196
13 Zhang Y, Han T F, Xiao M, et al. Effect of process parameters on the microstructure and properties of laser-clad FeNi-CoCrTi(0.5) high-entropy alloy coating [J]. International Journal of Minerals Metallurgy and Materials, 2020, 27(05): 630
14 Li Y N, Liang H, Nie Q X, et al. Microstructures and wear resistance of CoCrFeNi2V0.5Tix high-entropy alloy coatings prepared by laser cladding [J]. Crystals, 2020, 10(5): 352
15 Zhang Y, Han T, Xiao M, et al. Preparation of diamond reinforced NiCoCrTi0.5Nb0.5 high-entropy alloy coating by laser cladding: microstructure and wear behavior [J]. Journal of Thermal Spray Technology, 2020, 29(5): 1827
16 Wu B Y. Microstructure and mechanical properties of FeNi-CoCu system high entropy alloys and their composites [D]. South China University of Technology, 2017
16 吴炳勇. FeNiCoCu系高熵合金及其复合材料的微观组织与力学性能研究 [D]. 华南理工大学, 2017
17 Liu L, Qi J G, Wang B, et al. Microstructure and Mechanical Properties of CoCrFeNiVx High Entropy Alloys [J]. Special Casting & Nonferrous Alloys, 2015(11): 1130
17 刘亮, 齐锦刚, 王冰等. CoCrFeNiVx高熵合金的组织与力学性能 [J]. 特种铸造及有色合金, 2015(11): 1130
18 Zhang Y, Chen M B, Yang X, et al. Advanced Technology in High-entropy Alloys [M]. Beijing: Chemical Industry Press, 2019
18 张勇, 陈明彪, 杨潇等. 先进高熵合金技术 [M]. 北京:化学工业出版社, 2019
19 Ge Y Q, Wang W X. Microstructure and wear resistance of laser clad Ni60 alloy on AZ31B magnesium alloy in different laser power [J]. China Surface Engineering, 2012, 25(1): 45
19 葛亚琼, 王文先. 不同激光功率下镁合金表面激光熔覆Ni60合金涂层的显微组织和磨损性能 [J]. 中国表面工程, 2012, 25(1): 45
20 Tan J H, Sun R L, Niu W, et al. Effect of laser scanning speed on microstructure and properties of TC4 alloy surface laser cladding composite coating [J]. Materials Reports, 2020, 34(12): 98
20 谭金花, 孙荣禄, 牛伟等. 激光扫描速度对TC4合金表面激光熔覆复合涂层组织及性能的影响 [J]. 材料导报, 2020, 34(12): 98
21 Li G, Wen Y, Jiang T L, et al. Effect of Cu and Co element on microstructure and properties of laser sintering of CrFeNiAlSi high entropy alloy [J]. Heat Treatment of Metals, 2019, 44(6): 86
21 李刚, 温影, 蒋谭琳等. Cu, Co元素对激光烧结CrFeNiAlSi高熵合金组织与性能的影响 [J]. 金属热处理, 2019, 44 (6): 86
22 Li W, Liu G Z, Guo J J. Microstructure and electrochemical properties of AlFeCuCoNiCrTix high entropy alloys [J]. Special Casting & Nonferrous Alloys, 2009, 29(10): 941
22 李伟, 刘贵仲, 郭景杰. AlFeCuCoNiCrTix高熵合金的组织结构及电化学性能 [J]. 特种铸造及有色合金, 2009, 29(10): 941
23 Takeuchi A, Inoue A. Classification of bulk metallic glasses by atomic size difference, heat of mixing and period of constituent elements and its application to characterization of the main alloying element [J]. Materials Transactions, 2005, 46(12): 2817
24 Jiang S Y, Lin Z F, Sun Y X. Corrosion resistance of as-cast and annealed AlCoCrFeNi high-entropy alloys [J]. Rare Metal Materials and Engineering, 2018, 47(10): 277
24 蒋淑英, 林志峰, 孙永兴. AlCoCrFeNi高熵合金铸态与退火态的耐蚀性 [J]. 稀有金属材料与工程, 2018, 47(10): 277
[1] 毛建军, 富童, 潘虎成, 滕常青, 张伟, 谢东升, 吴璐. AlNbMoZrB系难熔高熵合金的Kr离子辐照损伤行为[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] 赵政翔, 廖露海, 徐芳泓, 张威, 李静媛. 超级奥氏体不锈钢24Cr-22Ni-7Mo-0.4N的热变形行为及其组织演变[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] 幸定琴, 涂坚, 罗森, 周志明. C含量对VCoNi中熵合金微观组织和性能的影响[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] 欧阳康昕, 周达, 杨宇帆, 张磊. LPSOMg-Y-Er-Ni合金的组织和拉伸性能[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] 徐利君, 郑策, 冯小辉, 黄秋燕, 李应举, 杨院生. 定向再结晶对热轧态Cu71Al18Mn11合金的组织和超弹性性能的影响[J]. 材料研究学报, 2023, 37(8): 571-580.
[8] 熊诗琪, 刘恩泽, 谭政, 宁礼奎, 佟健, 郑志, 李海英. 固溶处理对一种低偏析高温合金组织的影响[J]. 材料研究学报, 2023, 37(8): 603-613.
[9] 刘继浩, 迟宏宵, 武会宾, 马党参, 周健, 徐辉霞. 喷射成形M3高速钢热处理过程中组织的演变和硬度偏低问题[J]. 材料研究学报, 2023, 37(8): 625-632.
[10] 由宝栋, 朱明伟, 杨鹏举, 何杰. 合金相分离制备多孔金属材料的研究进展[J]. 材料研究学报, 2023, 37(8): 561-570.
[11] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[12] 王昊, 崔君军, 赵明久. 镍基高温合金GH3536带箔材的再结晶与晶粒长大行为[J]. 材料研究学报, 2023, 37(7): 535-542.
[13] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.
[14] 秦鹤勇, 李振团, 赵光普, 张文云, 张晓敏. 固溶温度对GH4742合金力学性能及γ' 相的影响[J]. 材料研究学报, 2023, 37(7): 502-510.
[15] 刘天福, 张滨, 张均锋, 徐强, 宋竹满, 张广平. 缺口应力集中系数对TC4 ELI合金低周疲劳性能的影响[J]. 材料研究学报, 2023, 37(7): 511-522.