Please wait a minute...
材料研究学报  2021, Vol. 35 Issue (7): 553-560    DOI: 10.11901/1005.3093.2020.515
  研究论文 本期目录 | 过刊浏览 |
Mg-0.4Zn镁合金挤压板拉伸变形组织的演变
顾佳卿1(), 唐伟能2(), 徐世伟1
1.宝钢股份研究院 上海 200431
2.宝钢金属有限公司技术中心 上海 200940
Microstructure Evolution During Tensile Deformation of an Extruded Mg-0.4Zn Alloy Plate
GU Jiaqing1(), TANG Weineng2(), XU Shiwei1
1.Shanghai Baosteel Research Institute Center, Shanghai 200431, China
2.Technology Center, Baosteel Metal Co. , Ltd, Shanghai 200940, China
引用本文:

顾佳卿, 唐伟能, 徐世伟. Mg-0.4Zn镁合金挤压板拉伸变形组织的演变[J]. 材料研究学报, 2021, 35(7): 553-560.
Jiaqing GU, Weineng TANG, Shiwei XU. Microstructure Evolution During Tensile Deformation of an Extruded Mg-0.4Zn Alloy Plate[J]. Chinese Journal of Materials Research, 2021, 35(7): 553-560.

全文: PDF(6991 KB)   HTML
摘要: 

用电子背散射衍射(EBSD)技术结合原位拉伸,研究了在0%~20%应变条件下,Mg-0.4%Zn二元镁合金晶界、织构和裂纹的变化。结果表明,在拉伸应变从0%增加到20%的过程中,随着应变量的增大材料微观组织中的孪晶逐渐增加。孪晶的类型以{10-12}拉伸孪晶为主;这种孪生使材料的组织织构类型发生了显著的变化,随着应变量的增大(0001)//TD面的新织构组分的强度提高;微观裂纹优先在原始晶界和孪晶尖处萌生并在部分晶粒出现穿晶裂纹,随着应力的增大微裂纹进一步扩展并相互连接最终使材料断裂。

关键词 金属材料镁合金原位拉伸孪生织构开裂    
Abstract

The evolution of grain boundaries, texture types and cracks of an extruded plate of Mg-0.4%Zn alloy during deformation by different tensile strains was investigated by means of in-situ tensile test coupled with electron backscattering diffraction (EBSD) technique in Zeiss Sigma 300 field emission scanning electron microscope. The results show that by the tensile strain from 0% to 20%, the twin boundaries of material increase gradually with the strains, the twin boundaries mainly belong to the type of {10-12} extension twin. Therewith, the twinning may bring about the variation of the texture of the alloy. During the tensile process, cracks in the Mg-Zn alloy may preferentially generate at the tips of the twins and/or initial grain boundaries, simultaneously trans-granular cracks appear in some grains with the increase of strain, finally fracture happened after the propagation of cracks.

Key wordsmetallic materials    magnesium alloy    in-situ tension    twin    texture    crack
收稿日期: 2020-12-03     
ZTFLH:  TG146.22  
基金资助:国家重点研发计划(2016YFB0301102)
作者简介: 顾佳卿,男,1982年生,硕士
SpecimenZnSiCuFeNiMg
Mg-0.4%Zn0.390.0040.0010.0020.0005Bal.
表1  试样的化学成分
图1  原位拉伸试样的几何形状和Gatan原位拉伸试验装置
图2  原位拉伸试样的工程应力-应变曲线
图3  不同应变状态下镁合金挤压板的原位反极图面的分布(∥ND面)
图4  不同应变状态下镁合金挤压板的原位二次电子形貌(200倍)
图5  不同应变状态下镁合金挤压板的原位拉伸极图
图6  不同应变状态下镁合金挤压板原位拉伸取向差的分布
图7  20%应变后不同晶粒孪晶晶界取向差分布图及其图例
图8  在20%应变状态下EBSD数据交互分析
1 Liu Q. Research progress on plastic deformation mechanism of Mg alloys [J]. Acta. Metall. Sin., 2010, 46: 1458
1 刘庆.镁合金塑性变形机理研究进展 [J]. 金属学报, 2010, 46: 1458
2 Chen Z H, Yang C H, Huang C Q, et al. Investigation of the twinning in plastic deformation of magnesium alloy [J]. Mater. Rev.. 2006, 20(8): 107
2 陈振华, 杨春花, 黄长清等. 镁合金塑性变形中孪生的研究 [J]. 材料导报, 2006, 20(8) : 107
3 Peng Q M, Sun Y, Wang J, et al. Structural characteristics of {10-11} contraction twin-twin interaction in magnesium [J]. Acta Mater., 2020, 192: 60
4 Jeong J, Alfreider M, Konetschnik R, et al. In-situ TEM observation of {10-12} twin-dominated deformation of Mg pillars: twinning mechanism, size effects and rate dependency [J]. Acta Mater., 2018, 158: 407
5 Liu H Q, Tang D, Cai Q W, et al. Deforming texture and deformation mechanism of coordination of AZ31 magnesium alloy sheets [J]. Chinese J. Mater. Res., 2012, 26(3): 231
5 刘华强, 唐荻, 蔡庆伍等. AZ31镁合金的变形织构和协调变形机理 [J]. 材料研究学报, 2012, 26(3): 231
6 Zhan M Y, Li C M, Shang J L. Investigation of the plastic deformation mechanism and twinning of magnesium alloys [J]. Mater. Rev., 2011, 25(2)A: 1
6 詹美燕, 李春明, 尚俊玲. 镁合金的塑性变形机制和孪生变形研究 [J]. 材料导报, 2011, 25(2)A: 1
7 Li L, Wu Y Z, Wu J. In-situ analysis of grain rotation and lattice strain within a magnesium polycrystal based on synchrotron polychromatic X-ray diffraction technique: (I) prior to twin [J]. Micron, 2018, 111: 1
8 Li L, Wu Y Z, Wu J, et al. In-situ analysis of deformation twins within a magnesium polycrystal: (II) twin growth [J]. Micron, 2019, 119: 8
9 Ando D,Koike J, Sutou Y. The role of deformation twinning in the fracture behavior and mechanism of basal textured magnesium alloys [J]. Mater. Sci. Eng., 2014, 600 A:145
10 Ventura N M D, Kalácska S, Casari D, et al. {10-12} twinning mechanism during in situ micro-tensile loading of pure Mg: role of basal slip and twin-twin interactions [J]. Mater. Design, 2021, 197: 109206.
11 Wu Z, Ahmad R, Yin B, et al. Mechanistic origin and prediction of enhanced ductility in magnesium alloys [J]. Science, 2018, 359: 447
12 Tang W, Han E H, Xu Y B, et al. Effect of Al, Ca alloying element on mechanical behavior of wrought magnesium alloys [J]. Chinese J. Mater. Res., 2005, 19(5): 471
12 唐伟, 韩恩厚, 徐永波等. Al和Ca对变形镁合金性能的影响 [J]. 材料研究学报, 2005, 19(5): 471
13 Jiang M G, Xu C, Yan H, et al. Correlation between dynamic recrystallization and formation of rare earth texture in a Mg-Zn-Gd magnesium alloy during extrusion [J]. Sci. Rep., 2018, 8(1): 16800
14 Wang F, Sandlöbes S, Diehl M, et al. In situ observation of collective grain-scale mechanics in Mg and Mg-rare earth alloys [J], Acta Mater., 2014, 80: 77
15 Basu I, Al-Samman T. Triggering rare earth texture modification in magnesium alloys by addition of zinc and zirconium [J]. Acta Mater., 2014, 67: 116
16 Obara T, Yoshinga H, Morozumi S. {11-22}<1123> slip system in magnesium [J]. Acta Metall., 1973, 21: 845
17 Ding S X, Lee W T, Chang C P. Improvement of strength of magnesium alloy processed by equal channel angular extrusion [J]. Scr. Mater., 2008, 59: 1006
18 Jain A, Duygulu O, Brown D W, et al. Grain size effects on the tensile properties and deformation mechanisms of a magnesium alloy AZ31B sheet [J]. Mater. Sci. Eng., 2008, 486A: 545
19 Reed-Hill R E, Robertson W D. Additional modes of deformation twinning in magnesium [J]. Acta Metall., 1957, 5: 717
20 Pérez-Prado M T, Molina-Aldareguia J M, Cepeda-Jiménez C M. EBSD-assisted slip trace analysis during in situ SEM mechanical testing: application to unravel grain size effects on plasticity of pure Mg polycrystals [J]. JOM, 2016, 68: 116
21 Yu H, Li C, Xin Y, et al. The mechanism for the high dependence of the Hall-Petch slope for twinning/slip on texture in Mg alloys [J]. Acta Mater., 2017, 128: 313
[1] 毛建军, 富童, 潘虎成, 滕常青, 张伟, 谢东升, 吴璐. AlNbMoZrB系难熔高熵合金的Kr离子辐照损伤行为[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] 赵政翔, 廖露海, 徐芳泓, 张威, 李静媛. 超级奥氏体不锈钢24Cr-22Ni-7Mo-0.4N的热变形行为及其组织演变[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] 幸定琴, 涂坚, 罗森, 周志明. C含量对VCoNi中熵合金微观组织和性能的影响[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] 欧阳康昕, 周达, 杨宇帆, 张磊. LPSOMg-Y-Er-Ni合金的组织和拉伸性能[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] 徐利君, 郑策, 冯小辉, 黄秋燕, 李应举, 杨院生. 定向再结晶对热轧态Cu71Al18Mn11合金的组织和超弹性性能的影响[J]. 材料研究学报, 2023, 37(8): 571-580.
[8] 熊诗琪, 刘恩泽, 谭政, 宁礼奎, 佟健, 郑志, 李海英. 固溶处理对一种低偏析高温合金组织的影响[J]. 材料研究学报, 2023, 37(8): 603-613.
[9] 刘继浩, 迟宏宵, 武会宾, 马党参, 周健, 徐辉霞. 喷射成形M3高速钢热处理过程中组织的演变和硬度偏低问题[J]. 材料研究学报, 2023, 37(8): 625-632.
[10] 由宝栋, 朱明伟, 杨鹏举, 何杰. 合金相分离制备多孔金属材料的研究进展[J]. 材料研究学报, 2023, 37(8): 561-570.
[11] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[12] 王昊, 崔君军, 赵明久. 镍基高温合金GH3536带箔材的再结晶与晶粒长大行为[J]. 材料研究学报, 2023, 37(7): 535-542.
[13] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.
[14] 秦鹤勇, 李振团, 赵光普, 张文云, 张晓敏. 固溶温度对GH4742合金力学性能及γ' 相的影响[J]. 材料研究学报, 2023, 37(7): 502-510.
[15] 刘天福, 张滨, 张均锋, 徐强, 宋竹满, 张广平. 缺口应力集中系数对TC4 ELI合金低周疲劳性能的影响[J]. 材料研究学报, 2023, 37(7): 511-522.