Please wait a minute...
材料研究学报  2021, Vol. 35 Issue (6): 467-473    DOI: 10.11901/1005.3093.2020.357
  研究论文 本期目录 | 过刊浏览 |
碳纤维表面溅射金属增强铜基复合材料的界面结合
杨雅娜, 陈文革(), 薛元琳
西安理工大学材料科学与工程学院 西安 710000
Interficial Bonding within Cu-based Composites Reinforced with TiC- or Ni-coated Carbon Fiber
YANG Yana, CHEN Wenge(), XUE Yuanlin
School of Materials Science and Engineering, Xi′an University of Technology, Xi′an 710000, China
引用本文:

杨雅娜, 陈文革, 薛元琳. 碳纤维表面溅射金属增强铜基复合材料的界面结合[J]. 材料研究学报, 2021, 35(6): 467-473.
Yana YANG, Wenge CHEN, Yuanlin XUE. Interficial Bonding within Cu-based Composites Reinforced with TiC- or Ni-coated Carbon Fiber[J]. Chinese Journal of Materials Research, 2021, 35(6): 467-473.

全文: PDF(9093 KB)   HTML
摘要: 

先分别在碳纤维表面磁控溅射镀覆厚度约0.8 μm均匀分布的TiC和Ni,然后用传统粉末冶金技术制备碳纤维(体积分数为2.5%)增强铜基复合材料。结果表明,铜基复合材料的力学性能与电性能协同提高。碳纤维在基体中分布均匀,没有出现明显的偏聚。溅射钛的碳纤维增强复合材料的硬度和电性能分别为40.8HV和91.0%IACS,溅射镍的碳纤维增强复合材料的硬度和电性能分别为38.8HV和79.7%IACS。在结合界面Ti与C或Ni与Cu发生反应,都有利于界面结合。

关键词 复合材料铜基界面结合磁控溅射碳纤维    
Abstract

Carbon fibers were coated with thin film of TiC and Ni respectively of about 0.8 μm in thickness by means of magnetron sputtering technique. Then the Cu-based composites reinforced with 2.5 %(volume fraction) coated carbon fibers were prepared by traditional powder metallurgy technology. The results show that the mechanical and electrical properties of Cu-based composites were improved through the reinforcements. The carbon fibers were homogeneously distributed in the matrix without obvious segregation. The hardness and electrical properties of the composite with reinforcer of TiC film coated carbon fibers were 40.8HV and 91.0%IACS, respectively, and those of Ni film coated carbon fibers were 38.8HV and 79.7%IACS, respectively. It follows that interaction of couples Ti/C and Ni/Cu respectively at interfaces of coated thin film/carbon fiber/Cu-matrix could be confirmed, which is beneficial to the interfacial bonding strength.

Key wordscomposites    copper-based    interface bonding    magnetron sputtering    carbon fiber
收稿日期: 2020-08-28     
ZTFLH:  TB333  
基金资助:陕西省重点研发项目(2017ZDXM-GY-050)
作者简介: 杨雅娜,女,1998年生,硕士
SpecificationNumber of filament/(number/bunch)Filament diameter/μmTensile strength/GPaElastic modulus/GPaDensity/g·cm-3Elongation at break/%
HTS406000~7.04.42301.771.9
表1  碳纤维的性能
图1  碳纤维表面磁控溅射金属前后的XRD谱
图2  碳纤维表面溅射金属前后的形貌
图3  碳纤维增强铜基复合材料的组织
Sample

Density

/g·cm-3

Relative density/%Conductivity/(%IACS)Hardness/(HV)
Sputtering TiC carbon fiber/Cu8.3796.191.040.8
Sputtering Ni carbon fiber/Cu8.3795.879.738.8
表2  碳纤维增强铜基复合材料的密度、相对密度、导电率和硬度
1 Bi H, Kou K C, Zhao Q X, et al. Research progress in electroless nickel plating on surface of carbon fibers [J]. Mater. Rev., 2008, 22(4): 71
1 毕辉, 寇开昌, 赵清新等. 碳纤维表面化学镀镍的研究进展 [J]. 材料导报, 2008, 22(4): 71
2 Tang YP, Liu HZ, Zhao HJ, et al. Friction and wear properties of copper matrix composites reinforced with short carbon fibers [J]. Mater. Des., 2008, 29(1): 257
3 Frank E, Steudle L M, Ingildeev D, et al. Carbon fibers: precursor systems, processing, structure, and properties [J]. Angew. Chem. Int. Ed. Engl., 2014, 53: 2
4 Jia J G, Gao C Q, Liu D Q, et al. Preparation and characterization of Ni-coated Carbon fiber reinforced Cu-based composites [J]. Mater. Rev., 1997, 19(2): 49
4 贾建刚, 高昌琦, 刘第强等. 表面镀Ni碳纤维增强Cu基复合材料的制备和表征 [J]. 材料导报, 1997, 19(2): 49
5 Deng C H, Ge Q L, Fan A Q. Present research status and trend of metal matrix composites by powder metallurgy [J]. Powder Metall. Ind, 2011, 21(1): 54
5 邓陈虹, 葛启录, 范爱琴. 粉末冶金金属基复合材料的研究现状及发展趋势 [J]. 粉末冶金工业, 2011, 21(1): 54
6 Wang D B, Wu Y C, Wang W F, et al. Effect of SiC particle surface modification on properties of Cu-matrix composites [J]. Chin. J. Nonferrous. Met., 2007, 17(11): 1814
6 王德宝, 吴玉程, 王文芳等. SiC颗粒表面修饰对铜基复合材料性能的影响 [J]. 中国有色金属学报, 2007, 17(11): 1814
7 Han C S, Guo T M, Nan X L, et al. New research progress in Cu-based composite [J]. Mater. Rev., 2012, 26(10): 90
7 韩昌松, 郭铁明, 南雪丽等. 铜基复合材料的研究新进展 [J]. 材料导报, 2012, 26(10): 90
8 Zhu M M, Li W. Present status on surface copper plating of the short carbon fiber reinforcement in the copper matrix composite [J]. Special Casting & Nonferrous Alloys, 2012, 32(8): 771
8 朱明明, 李卫. 铜基复合材料中短碳纤维增强体表面镀铜的研究现状 [J]. 特种铸造及有色合金, 2012, 32(8): 771
9 Zhao Y, Liu R H, Ran X, et al. Preparation and characterization of copper matrix composite reinforced by carbon fiber [J]. Hot Working Technology, 2015, 5(44): 145
9 赵宇, 刘润红, 冉旭等. 碳纤维增强铜基复合材料的制备与表征 [J]. 热加工工艺, 2015, 5(44): 145
10 Silva L L G, Alves L G, Toth A, et al. Study of the effect of nitrogen and air plasma immersion ion implantation treatments on the properties of carbon fiber [J]. IEEE T. Plasma. Sci., 2011, 39(11): 3067
11 Zhu M M, Li W. Electroless plating copper short carbon fiber reinforced copper based composites [J]. Special Casting & Nonferrous Alloy, 2013, 33(5): 462
11 朱明明, 李卫. 镀Cu短碳纤维增强Cu基复合材料的性能 [J]. 特种铸造及有色合金, 2013, 33(5): 462
12 Chen S G, Yi M Z, Ran L P, et al. Effect of copper-coated carbon fiber on tribological properties of Cu/C composites [J]. Heat Treatment of Metals, 2019, 44(4): 195
12 陈伸干, 易茂中, 冉丽萍等. 镀铜碳纤维对Cu/C复合材料摩擦磨损性能的影响 [J]. 金属热处理, 2019, 44(4): 195
13 Xu J C, Li X L, Xia L,et al. Preparation of Cf/Cu composite and investigations in its properties [J]. Journal of Lanzhou University(Medical Sciences), 2004, 40(4): 28
13 徐金城, 李晓龙, 夏龙等. 短碳纤维增强铜基复合材料的制备及其性能的研究 [J]. 兰州大学学报, 2004, 40(4): 28
14 Zhang X J, Yang W C, Zhang J Y, et al. Multiscale graphene/carbon fiber reinforced copper matrix hybrid composites: Microstructure and properties [J]. Mater. Sci. Eng., A, 2019, 743: 712
15 Tang Y P, Liu H Z, Zhao H J, et al. Friction and wear properties of copper matrix composites reinforced with short carbon fibers [J]. Mater. Des., 2006, 29(1): 257
16 Liu J Z, Li G D, Xiong X, et al. Fabrication and properties of electroplating Cu/Ni duplex coating on carbon fiber [J]. Materials Science and Engineering of Powder Metallurgy, 2016, 21(1): 180
16 刘靖忠, 李国栋, 熊翔等. 碳纤维电镀Cu/Ni双镀层及其性能表征 [J]. 粉末冶金材料科学与工程, 2016, 21(1): 180
17 Gu B, Xu S F, Xu J H. Electroless copper plating on short carbon fiber [J]. Hot Working Technology, 2005, 15: 44
17 顾斌, 许少凡, 徐继辉. 短碳纤维表面化学镀铜工艺研究 [J]. 热加工工艺, 2005, 12:44
18 Jiang B L, Yang W, Su Y. Engineering applications of microarc oxidation and magnetron sputter in [J]. Heat Treatment of Metals, 2008, 33(1): 86
18 蒋百灵, 杨巍, 苏阳. 微弧氧化与磁控溅射的工程应用 [J]. 金属热处理, 2008, 33(1): 86
19 Li F, Zhu Y, Li L H, et al. Review on magnetron sputtering technology and its development [J]. Vacuum Electronics, 2011, 3, 49
19 李芬, 朱颖, 李刘合等. 磁控溅射技术及其发展 [J]. 真空电子技术, 2011, 3: 49
20 Li Y, Wang H B, Gao W D. Structure and properties of nano-copper thin films deposited on carbon fiber fabric by magnetron sputtering [J]. New Chemical Materials, 2011, 39(12): 62
20 李颖, 王鸿博, 高卫东. 碳纤维表面磁控溅射镀铜研究 [J]. 化工新型材料, 2011, 39(12): 62
21 Zhao X M, Wang H B. Optimization of magnetron on sputtering program of depositing nanocopper thin films of nonwovens carbon fiber [J]. New Chemical Materials, 2014, 42(2): 72
21 赵晓曼, 王鸿博. 碳纤维毡表面磁控溅射纳米铜薄膜的工艺优化 [J]. 化工新型材料, 2014, 42(2): 72
22 Wang L, Chen W G, Li R, et al. Paration and properties of carbon fiber reinforced copper matrix composite [J]. Mater. Mech. Eng., 2014, 38(7): 80
22 王蕾, 陈文革, 李锐等. 碳纤维增强铜基复合材料的制备与性能 [J]. 机械工程材料, 2014, 38(7): 80
23 Wang X F, Hou D Y, Xu Z Z, et al. Effect of sputtering power on properties of carbon fiber and C/C film interface composites [J]. Journal of Wuhan Textile University, 2019, 32(6): 21
23 王孝锋, 侯大寅, 徐珍珍等. 溅射功率对碳纤维及C/C膜界面复合材料性能的影响 [J]. 武汉纺织大学学报, 2019, 32(6): 21
24 Xi S J, Liu X M. Influencing factors of TiC formation and its morphological characteristics in carbon fiber reinforced titanium sintering process [J]. Rare Metal. Mat. Eng., 2017, 46(11): 3288
24 席少静, 刘喜明. 碳纤维增强纯钛烧结过程中TiC 形成的影响因素及形态特征 [J]. 稀有金属材料与工程, 2017, 46(11): 3288
25 Lv W J, Zhang X N, Zhang H, et al. Growth mechanism of reinforcement in in situ processed TiC/Ti composites [J]. Acta Metall. Sin., 1999, 35(5): 536
25 吕维洁, 张小农, 张获, 吴人洁等. 原位合成TiC/Ti基复合材料增强体的生长机制 [J]. 金属学报, 1999, 35(5): 536
26 Li S F, Sun B, Imai H, et al. Powder metallurgy titanium metal matrix composites reinforced with carbon nanotubes and graphite [J].Composites Part A, 2013, 48: 57
27 Kamyar S, Ehsan G, Amirhossein P, et al. Super hard carbon microtubes derived from natural cotton for development of high performance titanium composites [J]. J. Alloys Compd., 2019, 775: 605
28 Yang L, Guo T L. Synthesis and field emission properties of electroless nickel film deposition on carbon fibers in the FED component [J]. Advanced Display, 2011, 130: 8
28 杨兰, 郭太良. 碳纤维表面化学镀覆Ni纳米薄膜制备及其FED 器件场发射特性 [J]. 现代显示, 2011, 130: 8
29 Lv X X, Lv C X, Yang Y, et al. Study on electroplated Ni coating of carbon fibers [J]. New Chemical Materials, 2011, 39(8): 89
29 吕晓轩, 吕春祥, 杨禹等. 碳纤维表面电镀镍研究 [J]. 化工新型材料, 2011, 39(8): 89
30 Yang L W, Yao G C, Wang D S. Depositing copper on carbon fiber and influence of carbon fiber to interface of Cf /Cu composite [J]. J. Chem. Ind. Eng., 2005, 56(7), 1343
30 杨连威, 姚广春, 王东署. 碳纤维镀铜及其对铜基复合材料界面影响 [J]. 化工学报, 2005, 56(7): 1343
[1] 潘新元, 蒋津, 任云飞, 刘莉, 李景辉, 张明亚. 热挤压钛/钢复合管的微观组织和性能[J]. 材料研究学报, 2023, 37(9): 713-720.
[2] 刘瑞峰, 仙运昌, 赵瑞, 周印梅, 王文先. 钛合金/不锈钢复合板的放电等离子烧结技术制备及其性能[J]. 材料研究学报, 2023, 37(8): 581-589.
[3] 季雨辰, 刘树和, 张天宇, 查成. MXene在锂硫电池中应用的研究进展[J]. 材料研究学报, 2023, 37(7): 481-494.
[4] 王伟, 解泽磊, 屈怡珅, 常文娟, 彭怡晴, 金杰, 王快社. Graphene/SiO2 纳米复合材料作为水基润滑添加剂的摩擦学性能[J]. 材料研究学报, 2023, 37(7): 543-553.
[5] 张藤心, 王函, 郝亚斌, 张建岗, 孙新阳, 曾尤. 基于界面氢键结构的石墨烯/聚合物复合材料的阻尼性能[J]. 材料研究学报, 2023, 37(6): 401-407.
[6] 邵萌萌, 陈招科, 熊翔, 曾毅, 王铎, 王徐辉. C/C-ZrC-SiC复合材料的Si2+ 离子辐照行为[J]. 材料研究学报, 2023, 37(6): 472-480.
[7] 张锦中, 刘晓云, 杨健茂, 周剑锋, 查刘生. 温度响应性双面纳米纤维的制备和性能[J]. 材料研究学报, 2023, 37(4): 248-256.
[8] 王刚, 杜雷雷, 缪自强, 钱凯成, 杜向博文, 邓泽婷, 李仁宏. 聚多巴胺改性碳纤维增强尼龙6复合材料的界面性能[J]. 材料研究学报, 2023, 37(3): 203-210.
[9] 林师峰, 徐东安, 庄艳歆, 张海峰, 朱正旺. TiZr基非晶/TC21双层复合材料的制备和力学性能[J]. 材料研究学报, 2023, 37(3): 193-202.
[10] 苗琪, 左孝青, 周芸, 王应武, 郭路, 王坦, 黄蓓. 304不锈钢纤维/ZL104铝合金复合泡沫的孔结构、力学、吸声性能及其机理[J]. 材料研究学报, 2023, 37(3): 175-183.
[11] 张开银, 王秋玲, 向军. FeCo/SnO2 复合纳米纤维的制备及其吸波性能[J]. 材料研究学报, 2023, 37(2): 102-110.
[12] 周聪, 昝宇宁, 王东, 王全兆, 肖伯律, 马宗义. (Al11La3+Al2O3)/Al复合材料的高温性能及其强化机制[J]. 材料研究学报, 2023, 37(2): 81-88.
[13] 罗昱, 陈秋云, 薛丽红, 张五星, 严有为. 钠离子电池双层碳包覆Na3V2(PO4)3 正极材料的超声辅助溶液燃烧合成及其电化学性能[J]. 材料研究学报, 2023, 37(2): 129-135.
[14] 闫春良, 郭鹏, 周靖远, 汪爱英. Cu掺杂非晶碳薄膜的电学性能及其载流子输运行为[J]. 材料研究学报, 2023, 37(10): 747-758.
[15] 刘志华, 岳远超, 丘一帆, 卜湘, 阳涛. g-C3N4/Ag/BiOBr复合材料的制备及其光催化还原硝酸盐氮[J]. 材料研究学报, 2023, 37(10): 781-790.