Please wait a minute...
材料研究学报  2021, Vol. 35 Issue (6): 401-410    DOI: 10.11901/1005.3093.2020.397
  综述 本期目录 | 过刊浏览 |
碳纳米角的制备及其应用进展
宋小龙1, 骆伟静1, 南艳丽2()
1.西安交通大学 金属材料强度国家重点实验室 西安 710049
2.西安建筑科技大学材料科学与工程学院 西安 710055
A Review for Synthesis and Applications of Carbon Nanohorns
SONG Xiaolong1, LUO Weijing1, NAN Yanli2()
1.State Key Laboratory for Mechanical Behavior of Metallic Materials, Xi'an Jiaotong University, Xi 'an 710049, China
2.School of Materials Science and Engineering, Xi'an University of Architecture and Technology, Xi 'an 710055, China
引用本文:

宋小龙, 骆伟静, 南艳丽. 碳纳米角的制备及其应用进展[J]. 材料研究学报, 2021, 35(6): 401-410.
Xiaolong SONG, Weijing LUO, Yanli NAN. A Review for Synthesis and Applications of Carbon Nanohorns[J]. Chinese Journal of Materials Research, 2021, 35(6): 401-410.

全文: PDF(12098 KB)   HTML
摘要: 

碳纳米角(Carbon nanohorns,CNHs)具有独特的物理化学性能,本文综述其制备方法、结构特征、形成机理、性能及其应用。用电弧放电法或CO2激光蒸发法,可工业化大规模生产高品质、低成本、无催化剂的CNHs。CNHs的形貌为大丽花型和种子型,由上千个单壁锥形碳管自组装形成。锥形管的尖端具有帽檐结构,锥角为20°,管径为2~5 nm,在尖端上分布着类富勒烯曲面结构的碳五元环和碳七元环,其芯部由短程无序的石墨烯片层组成。改变制备条件可在50~400 nm范围内调控CNHs的尺寸。CNHs具有特殊的结构和物理化学性质,如优异的导电性、预处理后的超高比表面积、电磁特性、热稳定性等。这些特点,使其在超级电容器、催化剂载体和生物载药等领域得到了广泛应用。但是,CNHs还有更多未知的物理化学性能和应用潜能,应该进一步深入研究。

关键词 评述无机非金属材料碳材料碳纳米角制备应用    
Abstract

Carbon nanohorns (CNHs) have become the focus of intense research due to their special physical and chemical properties. The preparation, structure, formation mechanism, property and applications of CNHs were presented in this review. As processes of cost-effective, high-purity, high-yield (industrial scale) and catalyst-free, CNHs can be produced by arc discharge and CO2 laser ablation. CNHs are spherical aggregates, consisting of thousands of individual nanohorns with 2~5 nm in diameter and 20° cone angle. The tips of individual CNH have massive topological defects, for example, pentagon- and heptagon-shaped ones. The core part is made up of disordered graphene, hence such a compound structure leads to distinct physical and chemical properties compared with other nano-carbons. In addition, the diameter of CNHs can be adjusted within the range of 50~400 nm by adjusting the experimental procedures and parameters, correspondingly, their morphology changes form "dahlia-like"- to "bud-like"-type. The high purity and thermal stability, excellent electrical conductivity, combined with microporosity and mesoporosity, high surface area after post treatments make CNHs a promising candidate in many applications, such as super capacitor, catalyst support or catalyst, drug carrier systems, etc. Finally there still exist more unknown physical and chemical properties and application potential for this novel carbon nanohorns, which should be further studied.

Key wordsreview    inorganic non-metallic materials    carbon materials    carbon nanohorns    preparation    applications
收稿日期: 2020-09-22     
ZTFLH:  TB321  
作者简介: 宋小龙,男,1962年生,教授
图1  CNHs的基本结构
图2  大丽花型碳纳米角和种子型碳纳米角的TEM和HRTEM图像[33]
图3  在高于36 Gpa的压力下生成的新相的拉曼特征峰、在40.2 GPa下样品腔的光学照片以及原位同步辐射XRD测试结果
图4  激光燃烧法三室分离系统[5]
图5  水中电弧放电法制备CNHs装置的示意图[39]
图6  负载铂颗粒的CNHs的TEM照片[54]
1 Iijima S, Yudasaka M, Yamada R, et al. Nano-aggregates of single-walled graphitic carbon nano-horns [J]. Chemical Physics Letters, 1999, 309: 165
2 Karousis N, Suarez-Martinez I, Ewels C P, et al. Structure, properties, functionalization, and applications of carbon nanohorns [J]. Chemical Reviews, 2016, 116 (8): 4850
3 Lodermeyer F, Costa R D, and Guldi D M. Review-single-walled carbon nanohorn-based dye-sensitized solar cells. ECS Journal of Solid State Science and Technology, 2017, 6 (6): M3140-M3147
4 Zhang Z C, Han S, Wang C, et al. Single-walled carbon nanohorns for energy applications [J]. Nanomaterials2015, 5, 1732
5 Azami T, Kasuya D, Yuge R, et al. Large-scale production of single-wall carbon nanohorns with high purity [J]. Journal of Physical Chemistry C, 2008, 112 (5): 1330
6 Annamalai K P, Gao J, Liu L, et al. Nanoporous graphene/single wall carbon nanohorn heterostructures with enhanced capacitance [J]. Journal of Materials Chemistry A, 2015, 3 (22): 11740
7 Nan Y L, Li B, Zhang P, et al. Positive pressure assisted-arc discharge synthesis of single-walled carbon nanohorns [J]. Materials Letters, 2016, 180: 313
8 Xu J, Tomimoto H, Nakayama T. What is inside carbon nanohorn aggregates [J]. Carbon, 2011, 49(6): 2074
9 Xu J X, Shingaya Y, Tomimoto H, et al. Irreversible and reversible structural deformation and electromechanical behavior of carbon nanohorns probed by conductive AFM. 2011, 7(9): 1169
10 Nan Y L, Li B, Zhao X, et al. Probing the mechanical properties of carbon nanohorns subjected to uniaxial compression and hydrostatic pressure [J]. Carbon, 2017, 125: 236
11 Garaj S, Thien-Nga L, Gaal R, et al. Electronic properties of carbon nanohorns studied by ESR [J]. Physical Review. B, 2000, 62: 17115
12 Bekyarova E, Murata K, Yudasaka M, et al. Single-wall nanostructured carbon for methane storage [J]. Phys. Chem. B, 2003,107(20): 4681
13 Zhu J, Kase D, Shiba K, et al. Binary nanomaterials based on nanocarbons: a case for probing carbon nanohorns biorecognition properties [J]. Nano Lett. 3,2003, (8): 1033
14 Zhang L, Zheng N, Gao A, et al. A robust fuel cell cathode catalyst assembled with nitrogen-doped carbon nanohorn and platinum nanoclusters [J]. J. Power Sources,2012, 220: 449
15 Kadambi S, Pramoda K, Ramamurty U, et al. Carbon-nanohorn-reinforced polymer matrix composites: synergetic benefits in mechanical properties [J]. ACS applied materials & interfaces, 2015, 7(31): 17016
16 Yang C M, Kim Y J, Miyawaki J, et al. Effect of the size and position of ion-accessible nanoholes on the specific capacitance of single-walled carbon nanohorns for supercapacitor applications [J]. Journal of Physical Chemistry C, 2015, 119(6): 2935
17 Sano N, Ukita S. One-Step synthesis of Pt-supported carbon nanohorns for fuel cell electrode by arc plasma in liquid nitrogen [J]. Mater. Chem. Phys. 2006, 99: 447
18 Poonjarernsilp C, Sano N, Charinpanitkul T, et al. Single-step synthesis and characterization of single-walled carbon nanohorns hybridized with Pd nanoparticles using N2 gas-injected arc-in-water method [J]. Carbon, 2011, 49: 4920
19 Nan Y L, Li B, Song X L, et al. Optimization of pore-opening condition in single-walled carbon nanohorns to achieve high capacity in double layer capacitor at high charge-discharge rate: Critical effect of their hierarchical pore structures [J]. Carbon, 2019, 142: 150
20 Zhang L J, Wang Y C, Lv J, et al. Materials discovery at high pressures. Nature Reviews Materials2017, 2: 17005
21 Bundy FPJ, Hall HT, Strong HM, et al. Man-made diamonds. Nature1955, 176: 51
22 Huang Q, Yu D L, Xu B, et al. Nanotwinned diamond with unprecedented hardness and stability [J]. Nature2014, 510: 250
23 Lu J, Wu J, Duan W, et al. Metal-to-semiconductor transition in squashed armchair carbon nanotubes [J]. Physical Review Letters2003, 90: 156601
24 Wang Z W, Zhao Y S, Tait K, et al. A quenchable superhard carbon phase synthesized by cold compression of carbon nanotubes. Proceedings of the National Academy of Sciences of the United States of America2004, 101: 13699
25 Wang Z W, Zhao Y S, Tait K, et al. A quenchable superhard carbon phase synthesized by cold compression of carbon nanotubes. Proceedings of the National Academy of Sciences of the United States of America2004, 101: 13699
26 Li B, Nan Y L, Hu Y, et al. Pressure and photoinduced phase transitions of elemental sulfur confined by open-end single-wall carbon nanohorns [J]. Phys. Chem. C 2018, 122, 6976
27 Suarez-Martinez I, Mittal J, Allouche H, et al. Fullerene attachment to sharp-angle nanocones mediated by covalent oxygen bridging [J]. Carbon, 2013, 54: 149
28 Yamaguchi T, Bandow S, Iijima S. Origin of giant graphite balls produced together with carbon nanohorns prepared by pulsed arc-discharge and a method for their removal [J]. Carbon, 2008, 46: 1110
29 Yang C M, Kim Y J, Endo M, et al. Nanowindow-regulated specific capacitance of supercapacitor electrodes of single-wall carbon nanohorns [J]. Journal of the American Chemical Society2007, 129: 20
30 Jung H J, Kim Y J, Han J H, et al. Thermal-treatment-induced enhancement in effective surface area of single-walled carbon nanohorns for supercapacitor application [J]. Journal of Physical Chemistry C2013, 117: 25877
31 Yang C M, Kim Y J, Miyawaki J, et al. Effect of the size and position of ion-accessible nanoholes on the specific capacitance of single-walled carbon nanohorns for supercapacitor applications [J]. Journal of Physical Chemistry C2015, 119: 2935
32 Fan J, Yuge R, Miyawaki J, et al. Close-open-close evolution of holes at the tips of conical graphenes of single-wall carbon nanohorns [J]. Journal of Physical Chemistry C2008, 112: 8600
33 Kasuya D, Yudasaka M, Takahashi K, et al. Selective production of single-wall carbon nanohorn aggregates and their formation mechanism [J]. Journal of Physical Chemistry B, 2002, 106(19): 4947
34 Yuge R, Bandow S, Nakahara K, et al. Structure and electronic states of single-wall carbon nanohorns prepared under nitrogen atmosphere [J]. Carbon, 2014, 75: 322
35 Yamaguchi T, Bandow S, Iijima S. Synthesis of carbon nanohorn particles by simple pulsed arc discharge ignited between pre-heated carbon rods [J]. Chemical Physics Letters, 2004, 389(1-3): 181
36 Li N, Wang Z Y, Zhao K K, et al. Synthesis of single-wall carbon nanohorns by arc-discharge in air and their formation mechanism [J]. Carbon, 2010, 48(5): 1580
37 Gattia D M, Vittori A M, Marazzi R. AC arc discharge synthesis of single-walled nanohorns and highly convoluted graphene sheets [J]. Nanotechnology, 2007, 18(25): 255604
38 Wang H, Chhowalla M, Sano N, et al. Large-scale synthesis of single-walled carbon nanohorns by submerged arc [J]. Nanotechnology, 2004, 15(5): 546
39 Sano N. Low-cost synthesis of single-walled carbon nanohorns using the arc in water method with gas injection [J]. Journal of Physics D: Applied Physics, 2004, 37(8): L17
40 Nan Y L, Li B, Sano N, et al. A novel structure "oversized carbon nanohorns". Materials Letters, 2018, 227: 254
41 Zhang M, Yudasaka M, Miyawaki J, et al. Isolating single-wall carbon nanohorns as small aggregates through a dispersion method [J]. Journal of Physical Chemistry B, 2005, 109(47): 22201
42 Zhang M, Yamaguchi T, Iijima S, et al. Individual single-wall carbon nanohorns separated from aggregates [J]. Journal of Physical Chemistry C, 2009, 113(26): 11184
43 Schiavon M. Device and method for production of carbon nanotubes, fullerene and their derivatives: US, 7125525[P] 2006-10-24
44 Wang N, Wu C, Li J, et al. Binder-free manganese oxide/carbon nanomaterials thin film electrode for supercapacitors [J]. ACS Applied Materials and Interfaces, 2011, 3(11): 4185
45 Yang C M, Kim Y J, Endo M, et al. Nanowindow-regulated specific capacitance of supercapacitor electrodes of single-wall carbon nanohorns [J]. Journal of the American Chemical Society, 2007, 129(1): 20
46 Yuge R, Manako T, Nakahara K, et al. The production of an electrochemical capacitor electrode using holey single-wall carbon nanohorns with high specific surface area [J]. Carbon, 2012, 50 (15): 5569
47 Jung H J, Kim Y J, Han J H, et al. Thermal-treatment-induced enhancement in effective surface area of single-walled carbon nanohorns for supercapacitor application [J]. Journal of Physical Chemistry C, 2013, 117(49): 25877
48 Yang C M, Kim Y J, Miyawaki J, et al. Effect of the size and position of ion-accessible nanoholes on the specific capacitance of single-walled carbon nanohorns for supercapacitor applications [J]. Journal of Physical Chemistry C, 2015, 119(6): 2935
49 Hiralal P, Wang H, Unalan H E, et al. Enhanced supercapacitors from hierarchical carbon nanotube and nanohorn architectures [J]. Journal of Materials Chemistry, 2011, 21(44): 17810
50 Izadi-najafabadi A, Yamada T, Futaba DN, et al. High-power supercapacitor electrodes nanotube composite [J]. ACS Nano, 2011, 2: 811
51 Maiti S, Das A K, Karan S K, et al. Carbon nanohorn-graphene nanoplate hybrid: an excellent electrode material for supercapacitor application [J]. Journal of Applied Polymer Science, 2015, 132 (25): 42118
52 Lü Q F, Wang S, Zhou J, et al. Dahlia-liked Carbon Nanohorns Decorated Graphene/Polyaniline Nanocomposite and Its Derived Nitrogen-doped Carbon for High-performance Supercapacitor [J]. ChemistrySelect, 2019, 4(24):7270
53 Sano N, Suntornlohanakul T, Poonjarernsilp C, et al. Controlled syntheses of various palladium alloy nanoparticles dispersed in single-walled carbon nanohorns by one-step formation using an arc discharge method [J]. Industrial and Engineering Chemistry Research, 2014, 53(12): 4732
54 Kosaka M, Kuroshima S, Kobayashi K, et al. Single-wall carbon nanohorns supporting Pt catalyst in direct methanol fuel cells [J]. Journal of Physical Chemistry C, 2009, 113(20): 8660
55 Zhang L, Zheng N, Gao A, et al. A robust fuel cell cathode catalyst assembled with nitrogen-doped carbon nanohorn and platinum nanoclusters [J]. Journal of Power Sources, 2012, 220: 449
56 Sano N, Kimura Y, Suzuki T. Synthesis of carbon nanohorns by a gas-injected arc-in-water method and application to catalyst-support for polymer electrolyte fuel cell electrodes [J]. Journal of Materials Chemistry, 2008, 18(13): 1555
57 Sano N, Suzuki T, Hirano K, et al. Influence of arc duration time on the synthesis of carbon nanohorns by a gas-injected arc-in-water system: Application to polymer electrolyte fuel cell electrodes [J]. Plasma Sources Science and Technology, 2011, 18(13): 1555
58 Sano N, Suntornlohanakul T, Poonjarernsilp C, et al. Controlled syntheses of various palladium alloy nanoparticles dispersed in single-walled carbon nanohorns by one-step formation using an arc discharge method [J]. Industrial and Engineering Chemistry Research, 2014, 53(12): 4732
59 Poonjarernsilp C, Sano N, Tamon H. Simultaneous esterification and transesterification for biodiesel synthesis by a catalyst consisting of sulfonated single-walled carbon nanohorn dispersed with Fe/Fe2O3 nanoparticles [J]. Appl. Catal. 2015, 497: 145
60 Shuit S H, Tan S H. Biodiesel production via esterification of palm fatty acid distillate using sulphonated multi-walled carbon nanotubes as a solid acid catalyst: Process study, catalyst reusability and kinetic Study [J]. Bioenergy Res. 2015, 8: 605
61 Poonjarernsilp C, Sano N, Sawangpanich N, et al. Effect of Fe/Fe2O3 loading on the catalytic activity of sulfonated single-walled carbon nanohorns for the esterification of palmitic acid [J]. Green Chem. 2014, 16: 4936
62 Becker M L, Fagan J A, Gallant N D, et al. Length-dependent uptake of DNA-wrapped single-walled carbon nanotubes [J]. Advanced Materials, 2007, 19(7): 939
63 Chechetka S A, Zhang M, Yudasaka M, et al. Physicochemically functionalized carbon nanohorns for multi-dimensional cancer elimination [J]. Carbon, 2016, 97: 45
64 Ajima K, Yudasaka M, Murakami T, et al. Carbon nanohorns as anticancer drug carriers [J]. Molecular Pharmaceutics, 2005, 2 (6): 475
65 Miyawaki J, Yudasaka M, Azami T, et al. Toxicity of single-walled carbon nanohorns [J]. ACS Nano, 2008, 2(2): 213
66 Ajima K, Murakami T, Mizoguchi Y, et al. Enhancement of in vivo anticancer effects of cisplatin by incorporation inside single-wall carbon nanohorns [J]. ACS Nano, 2008, 2(10): 2057
67 Sekido M, Yudasaka M, Kouraba S, et al. Single wall carbon nanohorn as a drug carrier for controlled release [J]. Chemical Physics Letters, 2008, 461(4/6): 189
68 Zhong W Y, Ma X N, Shu C, et al. Preparation and in vitro release of a novel drug - carrying system based on carbon nanohorns - adriamycin [J]. Central South Pharmacy, 2014, 12(05): 402
68 钟文英, 马小娜, 舒畅等. 基于碳纳米角-阿霉素的新型载药体系的制备和体外释放行为 [J]. 中南药学, 2014, 12(05): 402
[1] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[2] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[3] 由宝栋, 朱明伟, 杨鹏举, 何杰. 合金相分离制备多孔金属材料的研究进展[J]. 材料研究学报, 2023, 37(8): 561-570.
[4] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[5] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.
[6] 季雨辰, 刘树和, 张天宇, 查成. MXene在锂硫电池中应用的研究进展[J]. 材料研究学报, 2023, 37(7): 481-494.
[7] 李延伟, 罗康, 姚金环. Ni(OH)2 负极材料的十二烷基硫酸钠辅助制备及其储锂性能[J]. 材料研究学报, 2023, 37(6): 453-462.
[8] 姜水淼, 明开胜, 郑士建. 晶界偏析以及界面相和纳米晶材料力学性能的调控[J]. 材料研究学报, 2023, 37(5): 321-331.
[9] 余谟鑫, 张书海, 朱博文, 张晨, 王晓婷, 鲍佳敏, 邬翔. N掺杂生物炭的制备及其对Co2+ 的吸附性能[J]. 材料研究学报, 2023, 37(4): 291-300.
[10] 林师峰, 徐东安, 庄艳歆, 张海峰, 朱正旺. TiZr基非晶/TC21双层复合材料的制备和力学性能[J]. 材料研究学报, 2023, 37(3): 193-202.
[11] 朱明星, 戴中华. SrSc0.5Nb0.5O3 改性BNT基无铅陶瓷的储能特性研究[J]. 材料研究学报, 2023, 37(3): 228-234.
[12] 刘志华, 岳远超, 丘一帆, 卜湘, 阳涛. g-C3N4/Ag/BiOBr复合材料的制备及其光催化还原硝酸盐氮[J]. 材料研究学报, 2023, 37(10): 781-790.
[13] 周毅, 涂强, 米忠华. 制备方法对磷酸盐微晶玻璃结构和性能的影响[J]. 材料研究学报, 2023, 37(10): 739-746.
[14] 谢锋, 郭建峰, 王海涛, 常娜. ZnO/CdS/Ag复合光催化剂的制备及其催化和抗菌性能[J]. 材料研究学报, 2023, 37(1): 10-20.
[15] 余超, 邢广超, 吴郑敏, 董博, 丁军, 邸敬慧, 祝洪喜, 邓承继. 亚微米Al2O3 对重结晶碳化硅的作用机制[J]. 材料研究学报, 2022, 36(9): 679-686.