|
|
碳纳米角的制备及其应用进展 |
宋小龙1, 骆伟静1, 南艳丽2( ) |
1.西安交通大学 金属材料强度国家重点实验室 西安 710049 2.西安建筑科技大学材料科学与工程学院 西安 710055 |
|
A Review for Synthesis and Applications of Carbon Nanohorns |
SONG Xiaolong1, LUO Weijing1, NAN Yanli2( ) |
1.State Key Laboratory for Mechanical Behavior of Metallic Materials, Xi'an Jiaotong University, Xi 'an 710049, China 2.School of Materials Science and Engineering, Xi'an University of Architecture and Technology, Xi 'an 710055, China |
引用本文:
宋小龙, 骆伟静, 南艳丽. 碳纳米角的制备及其应用进展[J]. 材料研究学报, 2021, 35(6): 401-410.
Xiaolong SONG,
Weijing LUO,
Yanli NAN.
A Review for Synthesis and Applications of Carbon Nanohorns[J]. Chinese Journal of Materials Research, 2021, 35(6): 401-410.
1 |
Iijima S, Yudasaka M, Yamada R, et al. Nano-aggregates of single-walled graphitic carbon nano-horns [J]. Chemical Physics Letters, 1999, 309: 165
|
2 |
Karousis N, Suarez-Martinez I, Ewels C P, et al. Structure, properties, functionalization, and applications of carbon nanohorns [J]. Chemical Reviews, 2016, 116 (8): 4850
|
3 |
Lodermeyer F, Costa R D, and Guldi D M. Review-single-walled carbon nanohorn-based dye-sensitized solar cells. ECS Journal of Solid State Science and Technology, 2017, 6 (6): M3140-M3147
|
4 |
Zhang Z C, Han S, Wang C, et al. Single-walled carbon nanohorns for energy applications [J]. Nanomaterials2015, 5, 1732
|
5 |
Azami T, Kasuya D, Yuge R, et al. Large-scale production of single-wall carbon nanohorns with high purity [J]. Journal of Physical Chemistry C, 2008, 112 (5): 1330
|
6 |
Annamalai K P, Gao J, Liu L, et al. Nanoporous graphene/single wall carbon nanohorn heterostructures with enhanced capacitance [J]. Journal of Materials Chemistry A, 2015, 3 (22): 11740
|
7 |
Nan Y L, Li B, Zhang P, et al. Positive pressure assisted-arc discharge synthesis of single-walled carbon nanohorns [J]. Materials Letters, 2016, 180: 313
|
8 |
Xu J, Tomimoto H, Nakayama T. What is inside carbon nanohorn aggregates [J]. Carbon, 2011, 49(6): 2074
|
9 |
Xu J X, Shingaya Y, Tomimoto H, et al. Irreversible and reversible structural deformation and electromechanical behavior of carbon nanohorns probed by conductive AFM. 2011, 7(9): 1169
|
10 |
Nan Y L, Li B, Zhao X, et al. Probing the mechanical properties of carbon nanohorns subjected to uniaxial compression and hydrostatic pressure [J]. Carbon, 2017, 125: 236
|
11 |
Garaj S, Thien-Nga L, Gaal R, et al. Electronic properties of carbon nanohorns studied by ESR [J]. Physical Review. B, 2000, 62: 17115
|
12 |
Bekyarova E, Murata K, Yudasaka M, et al. Single-wall nanostructured carbon for methane storage [J]. Phys. Chem. B, 2003,107(20): 4681
|
13 |
Zhu J, Kase D, Shiba K, et al. Binary nanomaterials based on nanocarbons: a case for probing carbon nanohorns biorecognition properties [J]. Nano Lett. 3,2003, (8): 1033
|
14 |
Zhang L, Zheng N, Gao A, et al. A robust fuel cell cathode catalyst assembled with nitrogen-doped carbon nanohorn and platinum nanoclusters [J]. J. Power Sources,2012, 220: 449
|
15 |
Kadambi S, Pramoda K, Ramamurty U, et al. Carbon-nanohorn-reinforced polymer matrix composites: synergetic benefits in mechanical properties [J]. ACS applied materials & interfaces, 2015, 7(31): 17016
|
16 |
Yang C M, Kim Y J, Miyawaki J, et al. Effect of the size and position of ion-accessible nanoholes on the specific capacitance of single-walled carbon nanohorns for supercapacitor applications [J]. Journal of Physical Chemistry C, 2015, 119(6): 2935
|
17 |
Sano N, Ukita S. One-Step synthesis of Pt-supported carbon nanohorns for fuel cell electrode by arc plasma in liquid nitrogen [J]. Mater. Chem. Phys. 2006, 99: 447
|
18 |
Poonjarernsilp C, Sano N, Charinpanitkul T, et al. Single-step synthesis and characterization of single-walled carbon nanohorns hybridized with Pd nanoparticles using N2 gas-injected arc-in-water method [J]. Carbon, 2011, 49: 4920
|
19 |
Nan Y L, Li B, Song X L, et al. Optimization of pore-opening condition in single-walled carbon nanohorns to achieve high capacity in double layer capacitor at high charge-discharge rate: Critical effect of their hierarchical pore structures [J]. Carbon, 2019, 142: 150
|
20 |
Zhang L J, Wang Y C, Lv J, et al. Materials discovery at high pressures. Nature Reviews Materials2017, 2: 17005
|
21 |
Bundy FPJ, Hall HT, Strong HM, et al. Man-made diamonds. Nature1955, 176: 51
|
22 |
Huang Q, Yu D L, Xu B, et al. Nanotwinned diamond with unprecedented hardness and stability [J]. Nature2014, 510: 250
|
23 |
Lu J, Wu J, Duan W, et al. Metal-to-semiconductor transition in squashed armchair carbon nanotubes [J]. Physical Review Letters2003, 90: 156601
|
24 |
Wang Z W, Zhao Y S, Tait K, et al. A quenchable superhard carbon phase synthesized by cold compression of carbon nanotubes. Proceedings of the National Academy of Sciences of the United States of America2004, 101: 13699
|
25 |
Wang Z W, Zhao Y S, Tait K, et al. A quenchable superhard carbon phase synthesized by cold compression of carbon nanotubes. Proceedings of the National Academy of Sciences of the United States of America2004, 101: 13699
|
26 |
Li B, Nan Y L, Hu Y, et al. Pressure and photoinduced phase transitions of elemental sulfur confined by open-end single-wall carbon nanohorns [J]. Phys. Chem. C 2018, 122, 6976
|
27 |
Suarez-Martinez I, Mittal J, Allouche H, et al. Fullerene attachment to sharp-angle nanocones mediated by covalent oxygen bridging [J]. Carbon, 2013, 54: 149
|
28 |
Yamaguchi T, Bandow S, Iijima S. Origin of giant graphite balls produced together with carbon nanohorns prepared by pulsed arc-discharge and a method for their removal [J]. Carbon, 2008, 46: 1110
|
29 |
Yang C M, Kim Y J, Endo M, et al. Nanowindow-regulated specific capacitance of supercapacitor electrodes of single-wall carbon nanohorns [J]. Journal of the American Chemical Society2007, 129: 20
|
30 |
Jung H J, Kim Y J, Han J H, et al. Thermal-treatment-induced enhancement in effective surface area of single-walled carbon nanohorns for supercapacitor application [J]. Journal of Physical Chemistry C2013, 117: 25877
|
31 |
Yang C M, Kim Y J, Miyawaki J, et al. Effect of the size and position of ion-accessible nanoholes on the specific capacitance of single-walled carbon nanohorns for supercapacitor applications [J]. Journal of Physical Chemistry C2015, 119: 2935
|
32 |
Fan J, Yuge R, Miyawaki J, et al. Close-open-close evolution of holes at the tips of conical graphenes of single-wall carbon nanohorns [J]. Journal of Physical Chemistry C2008, 112: 8600
|
33 |
Kasuya D, Yudasaka M, Takahashi K, et al. Selective production of single-wall carbon nanohorn aggregates and their formation mechanism [J]. Journal of Physical Chemistry B, 2002, 106(19): 4947
|
34 |
Yuge R, Bandow S, Nakahara K, et al. Structure and electronic states of single-wall carbon nanohorns prepared under nitrogen atmosphere [J]. Carbon, 2014, 75: 322
|
35 |
Yamaguchi T, Bandow S, Iijima S. Synthesis of carbon nanohorn particles by simple pulsed arc discharge ignited between pre-heated carbon rods [J]. Chemical Physics Letters, 2004, 389(1-3): 181
|
36 |
Li N, Wang Z Y, Zhao K K, et al. Synthesis of single-wall carbon nanohorns by arc-discharge in air and their formation mechanism [J]. Carbon, 2010, 48(5): 1580
|
37 |
Gattia D M, Vittori A M, Marazzi R. AC arc discharge synthesis of single-walled nanohorns and highly convoluted graphene sheets [J]. Nanotechnology, 2007, 18(25): 255604
|
38 |
Wang H, Chhowalla M, Sano N, et al. Large-scale synthesis of single-walled carbon nanohorns by submerged arc [J]. Nanotechnology, 2004, 15(5): 546
|
39 |
Sano N. Low-cost synthesis of single-walled carbon nanohorns using the arc in water method with gas injection [J]. Journal of Physics D: Applied Physics, 2004, 37(8): L17
|
40 |
Nan Y L, Li B, Sano N, et al. A novel structure "oversized carbon nanohorns". Materials Letters, 2018, 227: 254
|
41 |
Zhang M, Yudasaka M, Miyawaki J, et al. Isolating single-wall carbon nanohorns as small aggregates through a dispersion method [J]. Journal of Physical Chemistry B, 2005, 109(47): 22201
|
42 |
Zhang M, Yamaguchi T, Iijima S, et al. Individual single-wall carbon nanohorns separated from aggregates [J]. Journal of Physical Chemistry C, 2009, 113(26): 11184
|
43 |
Schiavon M. Device and method for production of carbon nanotubes, fullerene and their derivatives: US, 7125525[P] 2006-10-24
|
44 |
Wang N, Wu C, Li J, et al. Binder-free manganese oxide/carbon nanomaterials thin film electrode for supercapacitors [J]. ACS Applied Materials and Interfaces, 2011, 3(11): 4185
|
45 |
Yang C M, Kim Y J, Endo M, et al. Nanowindow-regulated specific capacitance of supercapacitor electrodes of single-wall carbon nanohorns [J]. Journal of the American Chemical Society, 2007, 129(1): 20
|
46 |
Yuge R, Manako T, Nakahara K, et al. The production of an electrochemical capacitor electrode using holey single-wall carbon nanohorns with high specific surface area [J]. Carbon, 2012, 50 (15): 5569
|
47 |
Jung H J, Kim Y J, Han J H, et al. Thermal-treatment-induced enhancement in effective surface area of single-walled carbon nanohorns for supercapacitor application [J]. Journal of Physical Chemistry C, 2013, 117(49): 25877
|
48 |
Yang C M, Kim Y J, Miyawaki J, et al. Effect of the size and position of ion-accessible nanoholes on the specific capacitance of single-walled carbon nanohorns for supercapacitor applications [J]. Journal of Physical Chemistry C, 2015, 119(6): 2935
|
49 |
Hiralal P, Wang H, Unalan H E, et al. Enhanced supercapacitors from hierarchical carbon nanotube and nanohorn architectures [J]. Journal of Materials Chemistry, 2011, 21(44): 17810
|
50 |
Izadi-najafabadi A, Yamada T, Futaba DN, et al. High-power supercapacitor electrodes nanotube composite [J]. ACS Nano, 2011, 2: 811
|
51 |
Maiti S, Das A K, Karan S K, et al. Carbon nanohorn-graphene nanoplate hybrid: an excellent electrode material for supercapacitor application [J]. Journal of Applied Polymer Science, 2015, 132 (25): 42118
|
52 |
Lü Q F, Wang S, Zhou J, et al. Dahlia-liked Carbon Nanohorns Decorated Graphene/Polyaniline Nanocomposite and Its Derived Nitrogen-doped Carbon for High-performance Supercapacitor [J]. ChemistrySelect, 2019, 4(24):7270
|
53 |
Sano N, Suntornlohanakul T, Poonjarernsilp C, et al. Controlled syntheses of various palladium alloy nanoparticles dispersed in single-walled carbon nanohorns by one-step formation using an arc discharge method [J]. Industrial and Engineering Chemistry Research, 2014, 53(12): 4732
|
54 |
Kosaka M, Kuroshima S, Kobayashi K, et al. Single-wall carbon nanohorns supporting Pt catalyst in direct methanol fuel cells [J]. Journal of Physical Chemistry C, 2009, 113(20): 8660
|
55 |
Zhang L, Zheng N, Gao A, et al. A robust fuel cell cathode catalyst assembled with nitrogen-doped carbon nanohorn and platinum nanoclusters [J]. Journal of Power Sources, 2012, 220: 449
|
56 |
Sano N, Kimura Y, Suzuki T. Synthesis of carbon nanohorns by a gas-injected arc-in-water method and application to catalyst-support for polymer electrolyte fuel cell electrodes [J]. Journal of Materials Chemistry, 2008, 18(13): 1555
|
57 |
Sano N, Suzuki T, Hirano K, et al. Influence of arc duration time on the synthesis of carbon nanohorns by a gas-injected arc-in-water system: Application to polymer electrolyte fuel cell electrodes [J]. Plasma Sources Science and Technology, 2011, 18(13): 1555
|
58 |
Sano N, Suntornlohanakul T, Poonjarernsilp C, et al. Controlled syntheses of various palladium alloy nanoparticles dispersed in single-walled carbon nanohorns by one-step formation using an arc discharge method [J]. Industrial and Engineering Chemistry Research, 2014, 53(12): 4732
|
59 |
Poonjarernsilp C, Sano N, Tamon H. Simultaneous esterification and transesterification for biodiesel synthesis by a catalyst consisting of sulfonated single-walled carbon nanohorn dispersed with Fe/Fe2O3 nanoparticles [J]. Appl. Catal. 2015, 497: 145
|
60 |
Shuit S H, Tan S H. Biodiesel production via esterification of palm fatty acid distillate using sulphonated multi-walled carbon nanotubes as a solid acid catalyst: Process study, catalyst reusability and kinetic Study [J]. Bioenergy Res. 2015, 8: 605
|
61 |
Poonjarernsilp C, Sano N, Sawangpanich N, et al. Effect of Fe/Fe2O3 loading on the catalytic activity of sulfonated single-walled carbon nanohorns for the esterification of palmitic acid [J]. Green Chem. 2014, 16: 4936
|
62 |
Becker M L, Fagan J A, Gallant N D, et al. Length-dependent uptake of DNA-wrapped single-walled carbon nanotubes [J]. Advanced Materials, 2007, 19(7): 939
|
63 |
Chechetka S A, Zhang M, Yudasaka M, et al. Physicochemically functionalized carbon nanohorns for multi-dimensional cancer elimination [J]. Carbon, 2016, 97: 45
|
64 |
Ajima K, Yudasaka M, Murakami T, et al. Carbon nanohorns as anticancer drug carriers [J]. Molecular Pharmaceutics, 2005, 2 (6): 475
|
65 |
Miyawaki J, Yudasaka M, Azami T, et al. Toxicity of single-walled carbon nanohorns [J]. ACS Nano, 2008, 2(2): 213
|
66 |
Ajima K, Murakami T, Mizoguchi Y, et al. Enhancement of in vivo anticancer effects of cisplatin by incorporation inside single-wall carbon nanohorns [J]. ACS Nano, 2008, 2(10): 2057
|
67 |
Sekido M, Yudasaka M, Kouraba S, et al. Single wall carbon nanohorn as a drug carrier for controlled release [J]. Chemical Physics Letters, 2008, 461(4/6): 189
|
68 |
Zhong W Y, Ma X N, Shu C, et al. Preparation and in vitro release of a novel drug - carrying system based on carbon nanohorns - adriamycin [J]. Central South Pharmacy, 2014, 12(05): 402
|
68 |
钟文英, 马小娜, 舒畅等. 基于碳纳米角-阿霉素的新型载药体系的制备和体外释放行为 [J]. 中南药学, 2014, 12(05): 402
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|