|
|
FeCoNiMoCr高熵合金薄膜电极的电催化析氧性能 |
张泽灵1,2, 王世琦1,2, 徐邦利1, 赵昱皓1, 张旭海1,2, 方峰1,2( ) |
1.东南大学材料科学与工程学院 南京 211189 2.东南大学 江苏省先进金属材料高技术研究重点实验室 南京 211189 |
|
Electrocatalytic Oxygen Evolution Performance of High Entropy FeCoNiMoCr Alloy Thin Film Electrode |
ZHANG Zeling1,2, WANG Shiqi1,2, XU Bangli1, ZHAO Yuhao1, ZHANG Xuhai1,2, FANG Feng1,2( ) |
1.School of Materials Science and Engineering, Southeast University, Nanjing 211189, China 2.Jiangsu Key Laboratory of Advanced Metallic Materials, Southeast University, Nanjing 211189, China |
引用本文:
张泽灵, 王世琦, 徐邦利, 赵昱皓, 张旭海, 方峰. FeCoNiMoCr高熵合金薄膜电极的电催化析氧性能[J]. 材料研究学报, 2021, 35(3): 193-200.
Zeling ZHANG,
Shiqi WANG,
Bangli XU,
Yuhao ZHAO,
Xuhai ZHANG,
Feng FANG.
Electrocatalytic Oxygen Evolution Performance of High Entropy FeCoNiMoCr Alloy Thin Film Electrode[J]. Chinese Journal of Materials Research, 2021, 35(3): 193-200.
1 |
Suen N T, Hung S F, Quan Q, et al. Electrocatalysis for the oxygen evolution reaction: recent development and future perspectives [J]. Chem. Soc. Rev., 2017, 46: 337
|
2 |
Song J J, Wei C, Huang Z F, et al. A review on fundamentals for designing oxygen evolution electrocatalysts [J]. Chem. Soc. Rev., 2020, 49: 2196
|
3 |
Trotochaud L, Boettcher S W. Precise oxygen evolution catalysts: status and opportunities [J]. Scr. Mater., 2014, 74: 25
|
4 |
Özer E, Spöri C, Reier T, et al. Iridium(1 1 1), iridium(1 1 0), and ruthenium(0 0 0 1) single crystals as model catalysts for the oxygen evolution reaction: insights into the electrochemical oxide formation and electrocatalytic activity [J]. ChemCatChem, 2017, 9: 597
|
5 |
Lee Y, Suntivich J, May K J, et al. Synthesis and activities of rutile IrO2 and RuO2 nanoparticles for oxygen evolution in acid and alkaline solutions [J]. J. Phys. Chem. Lett., 2012, 3: 399
|
6 |
Wu Z P, Lu X F, Zang S Q, et al. Non-noble-metal-based electrocatalysts toward the oxygen evolution reaction [J]. Adv. Funct. Mater., 2020, 30: 1910274
|
7 |
Zhang W R, Liaw P K, Zhang Y. Science and technology in high-entropy alloys [J]. Sci. China Mater., 2018, 61: 2
|
8 |
Zhang Y, Zuo T T, Tang Z, et al. Microstructures and properties of high-entropy alloys [J]. Prog. Mater. Sci., 2014, 61: 1
|
9 |
Cantor B, Chang I T H, Knight P, et al. Microstructural development in equiatomic multicomponent alloys [J]. Mater. Sci. Eng., 2004, 375-377A: 213
|
10 |
Jin Z Y, Lv J, Jia H L, et al. Nanoporous Al-Ni-Co-Ir-Mo high-entropy alloy for record-high water splitting activity in acidic environments [J]. Small, 2019, 15: 1904180
|
11 |
Yu X X, Yu Z Y, Zhang X L, et al. Highly disordered cobalt oxide nanostructure induced by sulfur incorporation for efficient overall water splitting [J]. Nano Energy, 2020, 71: 104652
|
12 |
Shi J L, Sheng M Q, Wu Q, et al. Preparation of electrode materials of amorphous Co-W-B/carbon cloth composite and their electro-catalytic performance for electrolysis of water [J]. Chin. J. Mater. Res., 2020, 34: 263
|
12 |
施嘉伦, 盛敏奇, 吴琼等. 非晶Co-W-B/碳布复合电极材料的制备及其电解水催化性能 [J]. 材料研究学报, 2020, 34: 263
|
13 |
Fang M, Han D, Xu W B, et al. Surface-guided formation of amorphous mixed-metal oxyhydroxides on ultrathin MnO2 nanosheet arrays for efficient electrocatalytic oxygen evolution [J]. Adv. Energy Mater., 2020, 10: 2001059
|
14 |
Wang T Y, He Q F, Zhang J Y, et al. The controlled large-area synthesis of two dimensional metals [J]. Mater. Today, 2020, 36: 30
|
15 |
Glasscott M W, Pendergast A D, Goines S, et al. Electrosynthesis of high-entropy metallic glass nanoparticles for designer, multi-functional electrocatalysis [J]. Nat. Commun., 2019, 10: 2650
|
16 |
Zhang G L, Ming K S, Kang J L, et al. High entropy alloy as a highly active and stable electrocatalyst for hydrogen evolution reaction [J]. Electrochim. Acta, 2018, 279: 19
|
17 |
Huo W Y, Liu X D, Tan S Y, et al. Ultrahigh hardness and high electrical resistivity in nano-twinned, nanocrystalline high-entropy alloy films [J]. Appl. Surf. Sci., 2018, 439: 222
|
18 |
Bockris J O M, Otagawa T. The electrocatalysis of oxygen evolution on perovskites [J]. J. Electrochem. Soc., 1984, 131: 290
|
19 |
Subbaraman R, Tripkovic D, Chang K C, et al. Trends in activity for the water electrolyser reactions on 3d M(Ni, Co, Fe, Mn) hydr(oxy)oxide catalysts [J]. Nat. Mater., 2012, 11: 550
|
20 |
Choe S, Lee B S, Cho M K, et al. Electrodeposited IrO2/Ti electrodes as durable and cost-effective anodes in high-temperature polymer-membrane-electrolyte water electrolyzers [J]. Appl. Catal., 2018, 226B: 289
|
21 |
Krstić V, Pešovski B. Reviews the research on some dimensionally stable anodes (DSA) based on titanium [J]. Hydrometallurgy, 2019, 185: 71
|
22 |
Li D, Tang J Y, Zhou X Z, et al. Electrochemical degradation of pyridine by Ti/SnO2–Sb tubular porous electrode [J]. Chemosphere, 2016, 149: 49
|
23 |
Dai W J, Lu T, Pan Y. Novel and promising electrocatalyst for oxygen evolution reaction based on MnFeCoNi high entropy alloy [J]. J. Power Sources, 2019, 430: 104
|
24 |
Jian J. Synthesis of nano-sulfures/oxides and their research and application in electrocatalytic water splitting [D]. Jilin: Jilin University, 2019
|
24 |
菅娟. 纳米硫/氧化物的合成及其在电催化水裂解中的研究和应用 [D]. 吉林: 吉林大学, 2019
|
25 |
Ren Z D. A study of magnetron-sputtering alloy electrodes and their electrocatalysis [D]. Wuhan: Wuhan University, 2014
|
25 |
任占冬. 磁控溅射制备合金电极及相关电催化研究 [D]. 武汉: 武汉大学, 2014
|
26 |
Zhang D D, Meng L J, Shi J Y, et al. One-step preparation of optically transparent Ni-Fe oxide film electrocatalyst for oxygen evolution reaction [J]. Electrochim. Acta, 2015, 169: 402
|
27 |
Wang T Y, He Q F, Zhang J Y, et al. The controlled large-area synthesis of two dimensional metals [J]. Mater. Today, 2020, 36: 30
|
28 |
Inamdar A I, Chavan H S, Pawar S M, et al. NiFeCo oxide as an efficient and sustainable catalyst for the oxygen evolution reaction [J]. Int. J. Energ. Res., 2020, 44: 1789
|
29 |
Xu J Y, Murphy S, Xiong D H, et al. Cluster beam deposition of ultrafine cobalt and ruthenium clusters for efficient and stable oxygen evolution reaction [J]. ACS Appl. Energy Mater., 2018, 1: 3013
|
30 |
Yang Y, Kao L C, Liu Y Y, et al. Cobalt-doped black TiO2 nanotube array as a stable anode for oxygen evolution and electrochemical wastewater treatment [J]. ACS Catal., 2018, 8: 4278
|
31 |
Dai W J, Lu T, Pan Y. Novel and promising electrocatalyst for oxygen evolution reaction based on MnFeCoNi high entropy alloy [J]. J. Power Sources, 2019, 430: 104
|
32 |
García-Osorio D A, Jaimes R, Vazquez-Arenas J, et al. The kinetic parameters of the oxygen evolution reaction (OER) calculated on inactive anodes via EIS transfer functions: ·OH formation [J]. J. Electrochem. Soc., 2017, 164: E3321
|
33 |
Li D L, Batchelor-McAuley C, Compton R G. Some thoughts about reporting the electrocatalytic performance of nanomaterials [J]. Appl. Mater. Today, 2020, 18: 100404
|
34 |
Voiry D, Chhowalla M, Gogotsi Y, et al. Best practices for reporting electrocatalytic performance of nanomaterials [J]. ACS Nano, 2018, 12: 9635
|
35 |
Zhao X H, Xue Z M, Chen W J, et al. Ambient fast, large-scale synthesis of entropy-stabilized metal-organic framework nano-sheets for electrocatalytic oxygen evolution [J]. J. Mater. Chem., 2019, 7A: 26238
|
36 |
Chen P Z, Tong Y, Wu C Z, et al. Surface/interfacial engineering of inorganic low-dimensional electrode materials for electrocatalysis [J]. Acc. Chem. Res., 2018, 51: 2857
|
37 |
Xiao H, Shin H, Goddard W A III. Synergy between Fe and Ni in the optimal performance of (Ni, Fe)OOH catalysts for the oxygen evolution reaction [J]. Proc. Natl. Acad. Sci. USA, 2018, 115: 5872
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|