Please wait a minute...
材料研究学报  2021, Vol. 35 Issue (3): 193-200    DOI: 10.11901/1005.3093.2020.233
  研究论文 本期目录 | 过刊浏览 |
FeCoNiMoCr高熵合金薄膜电极的电催化析氧性能
张泽灵1,2, 王世琦1,2, 徐邦利1, 赵昱皓1, 张旭海1,2, 方峰1,2()
1.东南大学材料科学与工程学院 南京 211189
2.东南大学 江苏省先进金属材料高技术研究重点实验室 南京 211189
Electrocatalytic Oxygen Evolution Performance of High Entropy FeCoNiMoCr Alloy Thin Film Electrode
ZHANG Zeling1,2, WANG Shiqi1,2, XU Bangli1, ZHAO Yuhao1, ZHANG Xuhai1,2, FANG Feng1,2()
1.School of Materials Science and Engineering, Southeast University, Nanjing 211189, China
2.Jiangsu Key Laboratory of Advanced Metallic Materials, Southeast University, Nanjing 211189, China
引用本文:

张泽灵, 王世琦, 徐邦利, 赵昱皓, 张旭海, 方峰. FeCoNiMoCr高熵合金薄膜电极的电催化析氧性能[J]. 材料研究学报, 2021, 35(3): 193-200.
Zeling ZHANG, Shiqi WANG, Bangli XU, Yuhao ZHAO, Xuhai ZHANG, Feng FANG. Electrocatalytic Oxygen Evolution Performance of High Entropy FeCoNiMoCr Alloy Thin Film Electrode[J]. Chinese Journal of Materials Research, 2021, 35(3): 193-200.

全文: PDF(7407 KB)   HTML
摘要: 

用磁控溅射法在Ti基底上沉积了FeCoNiMoCr高熵合金薄膜并制成电极,用SEM和EDS观察和分析了电极表面和横截面的形貌和元素分布,用表面轮廓测量仪测量了电极的表面粗糙度,用XRD分析了电极的物相和结构,使用电化学工作站表征了电极的电化学性能。结果表明,电极的表面粗糙、元素分布均匀,电极上的膜厚约为2.40 μm,薄膜呈非晶态。电极在碱性溶液中表现出良好的析氧性能和稳定性。在电流密度为10.0 mA/cm2条件下,过电位为360 mV、Tafel斜率为73.45 mV/dec。在过电位为360 mV的条件下连续使用24 h,电流密度没有明显的衰减。循环伏安实验和电化学阻抗分析的结果表明,FeCoNiMoCr高熵合金薄膜本征催化活性的提高使电极的电催化析氧性能优于贵金属RuO2(过电位为409 mV,Tafel斜率为94.18 mV/dec)。

关键词 金属材料高熵薄膜电极析氧性能磁控溅射非晶    
Abstract

Thin film of high entropy FeCoNiMoCr alloy was deposited on Ti substrate by magnetron sputtering method to obtain high entropy film electrode. The surface morphology, composition, phase constituent, structure and performance of the electrode were characterized by means of surface profilometer, SEM-EDS, XRD and electrochemical workstation. The results show that the electrode surface is rough, the constituent elements are evenly distributed, the film thickness is about 2.40 μm, and the film is amorphous. The electrode showed good oxygen evolution performance and good stability in the alkaline solution. Under the condition of current density of 10.0 mA/cm2, the overpotential was 360 mV, the Tafel slope was 73.45 mV/dec. Under the condition of overpotential of 360 mV, the current density was not significantly attenuated after continuous use for 24 hours. The results of cyclic voltammetry and electrochemical impedance analysis show that due to the improved intrinsic catalytic activity, the film electrode have electrocatalytic oxygen evolution performance better than that of the noble metal oxide RuO2 (over potential 409 mV, Tafel slope 94.18 mV/dec).

Key wordsmetallic materials    high-entropy thin film electrode    oxygen evolution performance    magnetron sputtering    amorphous microcrystalline
收稿日期: 2020-06-16     
ZTFLH:  TB430.4030  
基金资助:江苏省333工程资助项目(BRA2018045);江苏省自然科学基金(BK20180264)
作者简介: 张泽灵,女,1996年生,硕士生

Base pressure

/Pa

Sputtering pressure

/Pa

Ar2 flow rate

/sccm

Sputtering power

/W

Deposition time

/h

6×10-40.530801
表1  高熵薄膜电极的制备工艺参数
图1  高熵薄膜电极表面的SEM照片、EDS能谱以及表面元素分布
图2  基底和高熵薄膜电极表面的SEM照片
图3  高熵薄膜电极和基底的轮廓曲线
图4  高熵薄膜电极横截面的元素分布
图5  高熵薄膜电极和基底的XRD衍射图谱以及高熵薄膜电极的掠入射X射线衍射图谱
图6  电极的LSV曲线(内插图为根据电化学活性面积归一化后的LSV曲线)、Tafel斜率、电流密度差与扫描速率的关系图以及EIS曲线(符号:实验值;实线:模拟值;内插图:等效电路)
Materialsη10/mVb/mV·dec-1Cdl/mF·cm-2ECSA/cm2Rf/Ω·cm2Rs/Ω·cm2Rct/Ω·cm2
FeCoNiMoCr360.473.450.8320.6320.633.0220.28
RuO2409.494.181.7142.7542.752.9232.56
Ti Substrate575.4222.440.6716.6316.632.5712490
表2  电极的析氧反应动力学参数
图7  在360 mV过电位条件下高熵薄膜电极的计时电流曲线
1 Suen N T, Hung S F, Quan Q, et al. Electrocatalysis for the oxygen evolution reaction: recent development and future perspectives [J]. Chem. Soc. Rev., 2017, 46: 337
2 Song J J, Wei C, Huang Z F, et al. A review on fundamentals for designing oxygen evolution electrocatalysts [J]. Chem. Soc. Rev., 2020, 49: 2196
3 Trotochaud L, Boettcher S W. Precise oxygen evolution catalysts: status and opportunities [J]. Scr. Mater., 2014, 74: 25
4 Özer E, Spöri C, Reier T, et al. Iridium(1 1 1), iridium(1 1 0), and ruthenium(0 0 0 1) single crystals as model catalysts for the oxygen evolution reaction: insights into the electrochemical oxide formation and electrocatalytic activity [J]. ChemCatChem, 2017, 9: 597
5 Lee Y, Suntivich J, May K J, et al. Synthesis and activities of rutile IrO2 and RuO2 nanoparticles for oxygen evolution in acid and alkaline solutions [J]. J. Phys. Chem. Lett., 2012, 3: 399
6 Wu Z P, Lu X F, Zang S Q, et al. Non-noble-metal-based electrocatalysts toward the oxygen evolution reaction [J]. Adv. Funct. Mater., 2020, 30: 1910274
7 Zhang W R, Liaw P K, Zhang Y. Science and technology in high-entropy alloys [J]. Sci. China Mater., 2018, 61: 2
8 Zhang Y, Zuo T T, Tang Z, et al. Microstructures and properties of high-entropy alloys [J]. Prog. Mater. Sci., 2014, 61: 1
9 Cantor B, Chang I T H, Knight P, et al. Microstructural development in equiatomic multicomponent alloys [J]. Mater. Sci. Eng., 2004, 375-377A: 213
10 Jin Z Y, Lv J, Jia H L, et al. Nanoporous Al-Ni-Co-Ir-Mo high-entropy alloy for record-high water splitting activity in acidic environments [J]. Small, 2019, 15: 1904180
11 Yu X X, Yu Z Y, Zhang X L, et al. Highly disordered cobalt oxide nanostructure induced by sulfur incorporation for efficient overall water splitting [J]. Nano Energy, 2020, 71: 104652
12 Shi J L, Sheng M Q, Wu Q, et al. Preparation of electrode materials of amorphous Co-W-B/carbon cloth composite and their electro-catalytic performance for electrolysis of water [J]. Chin. J. Mater. Res., 2020, 34: 263
12 施嘉伦, 盛敏奇, 吴琼等. 非晶Co-W-B/碳布复合电极材料的制备及其电解水催化性能 [J]. 材料研究学报, 2020, 34: 263
13 Fang M, Han D, Xu W B, et al. Surface-guided formation of amorphous mixed-metal oxyhydroxides on ultrathin MnO2 nanosheet arrays for efficient electrocatalytic oxygen evolution [J]. Adv. Energy Mater., 2020, 10: 2001059
14 Wang T Y, He Q F, Zhang J Y, et al. The controlled large-area synthesis of two dimensional metals [J]. Mater. Today, 2020, 36: 30
15 Glasscott M W, Pendergast A D, Goines S, et al. Electrosynthesis of high-entropy metallic glass nanoparticles for designer, multi-functional electrocatalysis [J]. Nat. Commun., 2019, 10: 2650
16 Zhang G L, Ming K S, Kang J L, et al. High entropy alloy as a highly active and stable electrocatalyst for hydrogen evolution reaction [J]. Electrochim. Acta, 2018, 279: 19
17 Huo W Y, Liu X D, Tan S Y, et al. Ultrahigh hardness and high electrical resistivity in nano-twinned, nanocrystalline high-entropy alloy films [J]. Appl. Surf. Sci., 2018, 439: 222
18 Bockris J O M, Otagawa T. The electrocatalysis of oxygen evolution on perovskites [J]. J. Electrochem. Soc., 1984, 131: 290
19 Subbaraman R, Tripkovic D, Chang K C, et al. Trends in activity for the water electrolyser reactions on 3d M(Ni, Co, Fe, Mn) hydr(oxy)oxide catalysts [J]. Nat. Mater., 2012, 11: 550
20 Choe S, Lee B S, Cho M K, et al. Electrodeposited IrO2/Ti electrodes as durable and cost-effective anodes in high-temperature polymer-membrane-electrolyte water electrolyzers [J]. Appl. Catal., 2018, 226B: 289
21 Krstić V, Pešovski B. Reviews the research on some dimensionally stable anodes (DSA) based on titanium [J]. Hydrometallurgy, 2019, 185: 71
22 Li D, Tang J Y, Zhou X Z, et al. Electrochemical degradation of pyridine by Ti/SnO2–Sb tubular porous electrode [J]. Chemosphere, 2016, 149: 49
23 Dai W J, Lu T, Pan Y. Novel and promising electrocatalyst for oxygen evolution reaction based on MnFeCoNi high entropy alloy [J]. J. Power Sources, 2019, 430: 104
24 Jian J. Synthesis of nano-sulfures/oxides and their research and application in electrocatalytic water splitting [D]. Jilin: Jilin University, 2019
24 菅娟. 纳米硫/氧化物的合成及其在电催化水裂解中的研究和应用 [D]. 吉林: 吉林大学, 2019
25 Ren Z D. A study of magnetron-sputtering alloy electrodes and their electrocatalysis [D]. Wuhan: Wuhan University, 2014
25 任占冬. 磁控溅射制备合金电极及相关电催化研究 [D]. 武汉: 武汉大学, 2014
26 Zhang D D, Meng L J, Shi J Y, et al. One-step preparation of optically transparent Ni-Fe oxide film electrocatalyst for oxygen evolution reaction [J]. Electrochim. Acta, 2015, 169: 402
27 Wang T Y, He Q F, Zhang J Y, et al. The controlled large-area synthesis of two dimensional metals [J]. Mater. Today, 2020, 36: 30
28 Inamdar A I, Chavan H S, Pawar S M, et al. NiFeCo oxide as an efficient and sustainable catalyst for the oxygen evolution reaction [J]. Int. J. Energ. Res., 2020, 44: 1789
29 Xu J Y, Murphy S, Xiong D H, et al. Cluster beam deposition of ultrafine cobalt and ruthenium clusters for efficient and stable oxygen evolution reaction [J]. ACS Appl. Energy Mater., 2018, 1: 3013
30 Yang Y, Kao L C, Liu Y Y, et al. Cobalt-doped black TiO2 nanotube array as a stable anode for oxygen evolution and electrochemical wastewater treatment [J]. ACS Catal., 2018, 8: 4278
31 Dai W J, Lu T, Pan Y. Novel and promising electrocatalyst for oxygen evolution reaction based on MnFeCoNi high entropy alloy [J]. J. Power Sources, 2019, 430: 104
32 García-Osorio D A, Jaimes R, Vazquez-Arenas J, et al. The kinetic parameters of the oxygen evolution reaction (OER) calculated on inactive anodes via EIS transfer functions: ·OH formation [J]. J. Electrochem. Soc., 2017, 164: E3321
33 Li D L, Batchelor-McAuley C, Compton R G. Some thoughts about reporting the electrocatalytic performance of nanomaterials [J]. Appl. Mater. Today, 2020, 18: 100404
34 Voiry D, Chhowalla M, Gogotsi Y, et al. Best practices for reporting electrocatalytic performance of nanomaterials [J]. ACS Nano, 2018, 12: 9635
35 Zhao X H, Xue Z M, Chen W J, et al. Ambient fast, large-scale synthesis of entropy-stabilized metal-organic framework nano-sheets for electrocatalytic oxygen evolution [J]. J. Mater. Chem., 2019, 7A: 26238
36 Chen P Z, Tong Y, Wu C Z, et al. Surface/interfacial engineering of inorganic low-dimensional electrode materials for electrocatalysis [J]. Acc. Chem. Res., 2018, 51: 2857
37 Xiao H, Shin H, Goddard W A III. Synergy between Fe and Ni in the optimal performance of (Ni, Fe)OOH catalysts for the oxygen evolution reaction [J]. Proc. Natl. Acad. Sci. USA, 2018, 115: 5872
[1] 毛建军, 富童, 潘虎成, 滕常青, 张伟, 谢东升, 吴璐. AlNbMoZrB系难熔高熵合金的Kr离子辐照损伤行为[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] 赵政翔, 廖露海, 徐芳泓, 张威, 李静媛. 超级奥氏体不锈钢24Cr-22Ni-7Mo-0.4N的热变形行为及其组织演变[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] 幸定琴, 涂坚, 罗森, 周志明. C含量对VCoNi中熵合金微观组织和性能的影响[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] 欧阳康昕, 周达, 杨宇帆, 张磊. LPSOMg-Y-Er-Ni合金的组织和拉伸性能[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] 徐利君, 郑策, 冯小辉, 黄秋燕, 李应举, 杨院生. 定向再结晶对热轧态Cu71Al18Mn11合金的组织和超弹性性能的影响[J]. 材料研究学报, 2023, 37(8): 571-580.
[8] 熊诗琪, 刘恩泽, 谭政, 宁礼奎, 佟健, 郑志, 李海英. 固溶处理对一种低偏析高温合金组织的影响[J]. 材料研究学报, 2023, 37(8): 603-613.
[9] 刘继浩, 迟宏宵, 武会宾, 马党参, 周健, 徐辉霞. 喷射成形M3高速钢热处理过程中组织的演变和硬度偏低问题[J]. 材料研究学报, 2023, 37(8): 625-632.
[10] 由宝栋, 朱明伟, 杨鹏举, 何杰. 合金相分离制备多孔金属材料的研究进展[J]. 材料研究学报, 2023, 37(8): 561-570.
[11] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[12] 王昊, 崔君军, 赵明久. 镍基高温合金GH3536带箔材的再结晶与晶粒长大行为[J]. 材料研究学报, 2023, 37(7): 535-542.
[13] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.
[14] 秦鹤勇, 李振团, 赵光普, 张文云, 张晓敏. 固溶温度对GH4742合金力学性能及γ' 相的影响[J]. 材料研究学报, 2023, 37(7): 502-510.
[15] 刘天福, 张滨, 张均锋, 徐强, 宋竹满, 张广平. 缺口应力集中系数对TC4 ELI合金低周疲劳性能的影响[J]. 材料研究学报, 2023, 37(7): 511-522.