Please wait a minute...
材料研究学报  2021, Vol. 35 Issue (12): 933-941    DOI: 10.11901/1005.3093.2021.214
  研究论文 本期目录 | 过刊浏览 |
淬火温度对含铜5Cr15MoV马氏体不锈钢性能的影响
郝欣欣1,2, 席通2(), 张宏镇2, 杨春光2, 杨柯2
1.中国科学技术大学材料科学与工程学院 沈阳 110016
2.中国科学院金属研究所 师昌绪先进材料创新中心 沈阳 110016
Effect of Quenching Temperature on Microstructure and Properties of Cu-bearing 5Cr15MoV Martensitic Stainless Steel
HAO Xinxin1,2, XI Tong2(), ZHANG Hongzhen2, YANG Chunguang2, YANG Ke2
1.School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China
2.Shi -changxu Innovation Center for Advanced Materials, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
引用本文:

郝欣欣, 席通, 张宏镇, 杨春光, 杨柯. 淬火温度对含铜5Cr15MoV马氏体不锈钢性能的影响[J]. 材料研究学报, 2021, 35(12): 933-941.
Xinxin HAO, Tong XI, Hongzhen ZHANG, Chunguang YANG, Ke YANG. Effect of Quenching Temperature on Microstructure and Properties of Cu-bearing 5Cr15MoV Martensitic Stainless Steel[J]. Chinese Journal of Materials Research, 2021, 35(12): 933-941.

全文: PDF(7583 KB)   HTML
摘要: 

将含铜5Cr15MoV马氏体不锈钢在不同温度热处理并使用光学显微镜(OM)、扫描电子显微镜(SEM)、X射线衍射(XRD)、透射电子显微镜(TEM)、硬度测试和电化学测试等手段对其表征,研究了淬火温度对其组织、硬度以及耐蚀性能的影响。结果表明,铜元素的添加提高了材料中残余奥氏体的体积分数,而使其硬度降低。淬火后钢中的未溶碳化物为fcc结构的富铬M23C6型碳化物,铜元素的添加对5Cr15MoV马氏体不锈钢中碳化物的尺寸和形貌没有明显的影响,但是使其耐蚀性能略微降低。随着淬火温度从1000℃提高到1100℃,未溶碳化物逐渐减少,耐蚀性提高。残余奥氏体的含量也随着淬火温度的提高而增多,碳化物与残余奥氏体的共同作用使淬火后钢的硬度曲线呈抛物线状并在1050℃达到最大值。

关键词 金属材料含铜5Cr15MoV马氏体不锈钢微观组织硬度耐蚀性能    
Abstract

The Cu-bearing martensitic stainless steel 5Cr15MoV was heat treated at different temperatures for 30 min and then oil quenched. The effect of quenching temperature on the microstructure, hardness and corrosion resistance of the steel were investigated by means of optical microscopy (OM), scanning electron microscopy (SEM), X-ray diffraction (XRD), transmission electron microscopy (TEM), hardness tester and electrochemical test. The results show that the addition of Cu increases the volume fraction of residual austenite and decreases the hardness of the steel, the undissolved carbides in the quenched steel are Cr rich M23C6 type carbides with FCC structure, and the addition of Cu has no obvious effect on the size and morphology of the carbides in the 5Cr15MoV martensitic stainless steel, but its corrosion resistance is slightly reduced. With increase of the quenching temperature from 1000oC to 1100oC the undissolved carbides decrease, while the corrosion resistance of the steel increases. Meanwhile, the content of residual austenite also increases with the increase of quenching temperature. The combined action of carbide and residual austenite makes the hardness versus temperature curve of the quenched steel a parabolic shape with a maximum value at 1050°C.

Key wordsmetallic materials    Cu-bearing 5Cr15MoV martensitic stainless steel    microstructure    hardness    corrosion resistance
收稿日期: 2021-04-02     
ZTFLH:  TG161  
基金资助:佛山市中医院攀峰项目(202000206);沈阳市科技计划项目(20-203-5-21);中国科学院青年创新促进会项目(2018221)
作者简介: 郝欣欣,女,1996年生,硕士
MaterialsCSiMnPSCrMoVCuFe
5Cr15MoV0.461.001.030.0080.00314.500.610.15-Bal.
5Cr15MoV-2.81Cu0.470.900.990.0080.00214.610.630.152.81Bal.
5Cr15MoV-4.13Cu0.431.250.910.0070.00216.040.650.174.13Bal.
表1  实验用钢的化学成分(质量分数,%)
Characteristic diffraction lineG
(200)γ/(200)α'2.423
(220)γ/(200)α'1.274
(311)γ/(200)α'1.446
(200)γ/(211)α'1.331
(220)γ/(211)α'0.6955
(311)γ/(211)α'0.7939
表2  计算奥氏体含量时G的取值
图1  5Cr15MoV-4.13Cu在1000℃、1025℃、1050℃、1075℃、1100℃淬火后和5Cr15MoV在1050℃淬火后的光学显微组织
图2  5Cr15MoV、5Cr15MoV-2.81Cu和5Cr15MoV-4.13Cu在不同温度淬火后的XRD谱和残余奥氏体的含量
图3  5Cr15MoV-4.13Cu在1000℃、1025℃、1050℃、1075℃、1100℃淬火后和5Cr15MoV在1050℃淬火后的SEM照片
图4  在1050℃淬火后5Cr15MoV-4.13Cu中碳化物的XRD谱
图5  在1050℃淬火后5Cr15MoV的TEM照片
图6  5Cr15MoV-4.13Cu在1050℃淬火后的TEM照片
图7  在不同温度淬火后实验钢的硬度
图8  在不同温度淬火后5Cr15MoV的电化学极化曲线
Temperature/℃Ecorr/mVEp/mV
1000-152.8660.16
1025-132.0391.40
1050-119.35137.80
1075-113.47145.50
1100-105.77194.85
表3  在不同温度淬火后5Cr15MoV的电化学参数
图9  在1050℃淬火后不同Cu含量5Cr15MoV的电化学极化曲线
1 Hu K, Wu M Y, Li Y G. Research progress of martensitic stainless steel [J]. Foundry Technol., 2015, 36(10): 2394
1 胡 凯, 武明雨, 李运刚. 马氏体不锈钢的研究进展 [J]. 铸造技术, 2015, 36(10): 2394
2 Zhang E H, Zhang H L. Martensitic stainless steel development status and trends [J]. Coal Mine Machinery, 2014, 35(12): 16
2 张二红, 张华龙. 马氏体不锈钢发展现状与趋势 [J]. 煤矿机械, 2014, 35(12): 16
3 Chen J X. Crack failure analysis on kitchen knife of 5Cr15MoV steel [J]. Adv. Mater. Res., 2013, 834-836: 345
4 Yan H, He Z J, Lü N, et al. Effects of cooling rate on the precipitation behavior of grain boundary carbide and corrosion resistance of 5Cr15MoV stainless steel [J]. Mater. Corros., 2020, 71(8): 1257
5 Qin B. Effect of heat treatment on structure and properties of annealed cold rolled steet of martensitic stainless steel 5Cr15-MoV [J]. Spec. Steel, 2011, 32(02): 66
5 秦斌. 热处理对马氏体不锈钢5Cr15MoV冷轧退火板组织和性能的影响 [J]. 特殊钢, 2011, 32(02): 66
6 Zhang J Q, Wang Z B, Li X. Carbide precipitation in 5Cr15MoV martensitic stainless steel during hot working [J]. Heat Treat. Met., 2017, 42(02): 167
6 张剑桥, 王志斌, 李 筱. 5Cr15MoV马氏体不锈钢热加工过程碳化物析出 [J]. 金属热处理, 2017, 42(02): 167
7 Heidenau F, Mittelmeier W, Detsch R, et al. A novel antibacterial titania coating: metal ion toxicity and in vitro surface colonization [J]. J. Mater. Sci.: Mater. Med., 2005, 16(10): 883
8 Ren L, Nan L, Yang K. Study of copper precipitation behavior in a Cu-bearing austenitic antibacterial stainless steel [J]. Mater. Des., 2011, 32(4): 2374
9 Dan Z G, Ni H W, Xu B F, et al. Microstructure and antibacterial properties of AISI 420 stainless steel implanted by copper ions [J]. Thin Solid Films, 2005, 492(1): 93
10 Nan L, Cheng J, Yang K. Antibacterial behavior of a Cu-bearing Type 200 stainless steel [J]. J. Mater. Sci. Technol., 2012, 28(11): 1067
11 Ma D S, Chi H X, Zhou J, et al. Microstructure and mechanical properties of martensitic stainless steel 6Cr15MoV [J]. J. Iron Steel Res. Int., 2012, 19(3): 56
12 Qin B, Wang Z Y, Sun Q S. Effect of tempering temperature on properties of 00Cr16Ni5Mo stainless steel [J]. Mater. Charact., 2008, 59(8): 1096
13 Ji Y H, Xu W J, Liu W, et al. Microstructure and hardness of a novel Cu-bearing Cr17 martensitic stainless steel for knives and scissors [J]. Shanghai Jinshu, 2020, 42(06): 93
13 季勇华, 许万剑, 刘 威等. 一种新型刀剪用含铜Cr17马氏体不锈钢的组织和硬度 [J]. 上海金属, 2020, 42(06): 93
14 Yang Y D, Zhao H S, Liu T S, et al. Microstructure and properties of new high-carbon martensitic stainless steel [J]. J. Iron Steel Res., 2020, 32(02): 135
14 杨玉丹, 赵洪山, 刘腾轼等. 新型高碳马氏体不锈钢的组织与性能 [J]. 钢铁研究学报, 2020, 32(02): 135
15 Ma H, He Y, Lee K, et al. Effect of heat treatment on microstructural evolution of 13Cr martensitic stainless steel [J]. Key Eng. Mater., 2017, 727: 29
16 Tsuchiyama T, Tobata J, Tao T, et al. Quenching and partitioning treatment of a low-carbon martensitic stainless steel [J]. Mater. Sci. Eng. A, 2012, 532: 585
17 Barlow L, Du Toit M. Effect of austenitizing heat treatment on the microstructure and hardness of martensitic stainless steel AISI 420 [J]. J. Mater. Eng. Perform., 2012, 21: 1327
18 Zhu Q T, Li J, Shi C B, et al. Effect of quenching process on the microstructure and hardness of high-carbon martensitic stainless steel [J]. J. Mater. Eng. Perform., 2015, 24(11): 4313
19 Hutchinson B, Hagström J, Karlsson O, et al. Microstructures and hardness of as-quenched martensites (0.1~0.5%C) [J]. Acta Mater., 2011, 59(14): 5845
20 Yang Y D. Research on microstructure evolution of cutlery used high carbon martensitic stainless steel [D]. Shanghai: Shanghai University, 2020
20 杨玉丹. 刀具用高碳马氏体不锈钢的组织演变研究 [D]. 上海: 上海大学, 2020
21 Yao D. Evolution of the microstructure of high carbon martensitic stainless steel used as a cutlery material during manufacturing process [D]. Beijing: University of Science and Technology, 2016
21 姚 迪. 刀剪用高碳马氏体不锈钢生产过程组织演变行为研究 [D]. 北京: 北京科技大学, 2016
22 Krishna S C, Gangwar N K, Jha A K, et al. Effect of heat treatment on the microstructure and hardness of 17Cr-0.17N-0.43C-1.7Mo martensitic stainless steel [J]. J. Mater. Eng. Perform., 2015, 24(4): 1656
23 Bonagani S K, Bathula V, Kain V. Influence of tempering treatment on microstructure and pitting corrosion of 13 wt.% Cr martensitic stainless steel [J]. Corros. Sci., 2018, 131: 340
24 Lu S Y, Yao K F, Chen Y B, et al. The effect of tempering temperature on the microstructure and electrochemical properties of a 13% Cr-type martensitic stainless steel [J]. Electrochim. Acta, 2015, 165: 45
25 Ujiro T, Satoh S, Staehle R W, et al. Effect of alloying Cu on the corrosion resistance of stainless steels in chloride media [J]. Corros. Sci., 2001, 43(11): 2185
26 Ogura S, Sugimoto K, Sawada Y. Effects of Cu, Mo and C on the corrosion of deformed 18Cr8Ni stainless steels in H2SO4/NaCl solutions [J]. Corros. Sci., 1976, 16(5): 323
27 Seo M, Hultquist G, Leygraf C, et al. The influence of minor alloying elements (Nb, Ti and Cu) on the corrosion resistivity of ferritic stainless steel in sulfuric acid solution [J]. Corros. Sci., 1986, 26(11): 949
28 Ma T, Yang G Y, Deng M L, et al. Research status and prospect of copper-bearing steel [J]. Hot Work. Technol., 2017, 46(02): 36
28 马 涛, 杨桂宇, 邓美乐等. 含铜钢的研究现状及展望 [J]. 热加工工艺, 2017, 46(02): 36
29 Abo H, Noguchi S, Hayashi N, et al. Development of new pitting corrosion resistant austenitic stainless steel [J]. Corros. Eng., 1974, 23(6): 303
[1] 毛建军, 富童, 潘虎成, 滕常青, 张伟, 谢东升, 吴璐. AlNbMoZrB系难熔高熵合金的Kr离子辐照损伤行为[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] 赵政翔, 廖露海, 徐芳泓, 张威, 李静媛. 超级奥氏体不锈钢24Cr-22Ni-7Mo-0.4N的热变形行为及其组织演变[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] 幸定琴, 涂坚, 罗森, 周志明. C含量对VCoNi中熵合金微观组织和性能的影响[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] 欧阳康昕, 周达, 杨宇帆, 张磊. LPSOMg-Y-Er-Ni合金的组织和拉伸性能[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] 徐利君, 郑策, 冯小辉, 黄秋燕, 李应举, 杨院生. 定向再结晶对热轧态Cu71Al18Mn11合金的组织和超弹性性能的影响[J]. 材料研究学报, 2023, 37(8): 571-580.
[8] 熊诗琪, 刘恩泽, 谭政, 宁礼奎, 佟健, 郑志, 李海英. 固溶处理对一种低偏析高温合金组织的影响[J]. 材料研究学报, 2023, 37(8): 603-613.
[9] 刘继浩, 迟宏宵, 武会宾, 马党参, 周健, 徐辉霞. 喷射成形M3高速钢热处理过程中组织的演变和硬度偏低问题[J]. 材料研究学报, 2023, 37(8): 625-632.
[10] 由宝栋, 朱明伟, 杨鹏举, 何杰. 合金相分离制备多孔金属材料的研究进展[J]. 材料研究学报, 2023, 37(8): 561-570.
[11] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[12] 王昊, 崔君军, 赵明久. 镍基高温合金GH3536带箔材的再结晶与晶粒长大行为[J]. 材料研究学报, 2023, 37(7): 535-542.
[13] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.
[14] 秦鹤勇, 李振团, 赵光普, 张文云, 张晓敏. 固溶温度对GH4742合金力学性能及γ' 相的影响[J]. 材料研究学报, 2023, 37(7): 502-510.
[15] 刘天福, 张滨, 张均锋, 徐强, 宋竹满, 张广平. 缺口应力集中系数对TC4 ELI合金低周疲劳性能的影响[J]. 材料研究学报, 2023, 37(7): 511-522.