Please wait a minute...
材料研究学报  2021, Vol. 35 Issue (11): 850-856    DOI: 10.11901/1005.3093.2020.444
  研究论文 本期目录 | 过刊浏览 |
Fe微合金化对Cu‒Zr‒Al非晶合金塑性变形行为的影响及其机理
邢栋1, 陈双双1,2(), 宋佩頔1, 齐凯1, 尹俊1, 李维火1,2
1.安徽工业大学材料科学与工程学院 马鞍山 243002
2.安徽工业大学 教育部先进金属材料绿色制造与表面技术重点实验室 马鞍山 243002
Effect of Fe Microalloying on Plastic Deformation Behavior of Cu-Zr-Al Metallic Glasses
XING Dong1, CHEN Shuangshuang1,2(), SONG Peidi1, QI Kai1, YIN Jun1, LI Weihuo1,2
1.School of Materials Science and Engineering, Anhui University of Technology, Ma'anshan 243002, China
2.Key Laboratory of Green Fabrication and Surface Technology of Advanced Metal Materials, Anhui University of Technology, Ministry of Education, Ma'anshan 243002, China
引用本文:

邢栋, 陈双双, 宋佩頔, 齐凯, 尹俊, 李维火. Fe微合金化对Cu‒Zr‒Al非晶合金塑性变形行为的影响及其机理[J]. 材料研究学报, 2021, 35(11): 850-856.
Dong XING, Shuangshuang CHEN, Peidi SONG, Kai QI, Jun YIN, Weihuo LI. Effect of Fe Microalloying on Plastic Deformation Behavior of Cu-Zr-Al Metallic Glasses[J]. Chinese Journal of Materials Research, 2021, 35(11): 850-856.

全文: PDF(7802 KB)   HTML
摘要: 

用铜模喷铸法制备Cu(47.8-x)Zr46.2Al6Fex(x=0, 0.8, 1.2, 1.6)系列合金,研究了Fe微合金化对其非晶形成能力和力学性能的影响。结果表明:随着微量元素Fe含量的提高合金的玻璃形成能力降低,而其室温塑性变形能力明显提高;随着Fe含量的提高基体中产生了更多的自由体积,且Fe与Cu的正混合焓使基体中成分/自由体积分布的不均匀性提高。这些因素,使高Fe含量的非晶合金具有更高的塑性变形能力。

关键词 金属材料块体非晶合金玻璃形成能力混合焓室温塑性自由体积    
Abstract

Cu(47.8-x)Zr46.2Al6Fex (x=0, 0.8, 1.2, 1.6) alloy were prepared by copper-mold injection casting method and the effect of Fe microalloying on the glass-forming ability and mechanical properties of Cu(47.8-x)Zr46.2Al6Fex (x=0, 0.8, 1.2, 1.6) metallic glasses were investigated. The results show that the glass-forming ability of the alloy decreases with increasing of Fe content, while the plastic deformation ability at room temperature increases obviously. It is found that with the increase of minor Fe content more free volume will be introduced into the glassy matrix, and the inhomogeneity of composition and free volume distribution in the matrix will increase as a result of the positive mixing enthalpy of Fe and Cu. These factors jointly result in enhanced plasticity of metallic glass with high Fe content.

Key wordsmetallic materials    bulk metallic glasses    glass-forming ability    heat of mixing    room -temperature plasticity    free volume
收稿日期: 2020-10-26     
ZTFLH:  TB331  
基金资助:安徽省自然科学基金(1908085ME147);安徽省重点研究国际合作专项(202004b11020010);安徽省高校科学研究项目(KJ2020A0262)
作者简介: 邢栋,男,1993年生,硕士生
图1  Cu-Zr-Al-Fe合金体系中各构成元素之间混合热(kJ/mol)的关系[16]
图2  直径为2 mm的Cu(47.8-x)Zr46.2Al6Fex (x=0, 0.8, 1.2, 1.6)铸态合金样品的XRD谱
图3  直径为2 mm的Fe0、Fe0.8和Fe1.2块体非晶合金的DSC曲线
BMGs/%, atomic fraction

Tg

/K

Tx

/K

ΔTx

/K

Tm

/K

Tl

/K

Trgγ

D

/mm

Fe069476167114211750.5910.4072
Fe0.870076262114612070.5800.4002
Fe1.270576459113712180.5790.3972
表1  直径为2 mm的Fe0、Fe0.8和Fe1.2块体非晶合金的的热学参数
图4  直径为2 mm的Fe0、Fe0.8和Fe1.2块体非晶合金的室温压缩应力?应变曲线和其中区域“I”放大后展现的锯齿流变行为
BMGs/%,atomic fraction

σy

/MPa

σb

/MPa

εe

/%

εp

/%

εt

/%

Fe0182418992.030.212.24
Fe0.8183219691.874.596.46
Fe1.2176019051.957.239.18
表2  Fe0、Fe0.8和Fe1.2块体非晶合金的压缩力学性能
图5  Fe0.8和Fe1.2块体非晶合金应力下降幅度的百分比以及 Fe0.8和Fe1.2块体非晶合金弹性能释放密度与机器刚度的关系
图6  Fe0.8和Fe1.2块体非晶合金压缩变形后表面和断口的SEM形貌
图7  变形后的Fe1.2块体非晶合金的HRTEM照片以及对应的FFT图像
图8  Fe0.8和Fe1.2非晶合金玻璃转变温度前的热行为
图9  Fe0、Fe0.8和Fe1.2块体非晶合金的硬度变化折线图
1 Hufnagel T C, Schuh C A, Falk M L. Deformation of metallic glasses: recent developments in theory, simulations, and experiments [J]. Acta Mater., 2016, 109: 375
2 Inoue A, Takeuchi A. Recent development and application products of bulk glassy alloys [J]. Acta Mate., 2011, 59: 2243
3 Sun L G, Wu G, Wang Q, et al. Nanostructural metallic materials: structures and mechanical properties [J]. Mater. Today, 2020, 38: 114
4 Liu L C, Hasan M, Kumar G. Metallic glass nanostructures: fabrication, properties, and applications [J]. Nanoscale, 2014, 6: 2027
5 Li H X, Lu Z C, Wang S L, et al. Fe-based bulk metallic glasses: Glass formation, fabrication, properties and applications [J]. Prog. Mater. Sci., 2019, 103: 235
6 Sun B A, Wang W H. The fracture of bulk metallic glasses [J]. Prog. Mater. Sci., 2015, 74: 211
7 Kim D H, Kim W T, Park E S, et al. Phase separation in metallic glasses [J]. Prog. Mater. Sci., 2013, 58: 1103
8 Wang W H, Dong C, Shek C H. Bulk metallic glasses [J]. Mater. Sci. Eng., 2004, 44R: 45
9 Kim Y C, Na J H, Park J M, et al. Role of nanometer-scale quasicrystals in improving the mechanical behavior of Ti-based bulk metallic glasses [J]. Appl. Phys. Lett., 2003, 83: 3093
10 Pan J, Chan K C, Chen Q, et al. Enhanced plasticity by introducing icosahedral medium-range order in ZrCuNiAl metallic glass [J]. Intermetallics, 2012, 24: 79
11 Gao J H, Sharp J, Guan D K, et al. New compositional design for creating tough metallic glass composites with excellent work hardening [J]. Acta Mater., 2015, 86: 208
12 Li Z K, Fu H M, Sha P F, et al. Atomic interaction mechanism for designing the interface of W/Zr-based bulk metallic glass composites [J]. Sci. Rep., 2015, 5: 8967
13 Oh J C, Ohkubo T, Kim Y C, et al. Phase separation in Cu43Zr43Al7Ag7 bulk metallic glass [J]. Scr. Mater., 2005, 53: 165
14 Yao K F, Ruan F, Yang Y Q, et al. Superductile bulk metallic glass [J]. Appl. Phys. Lett., 2006, 88: 122106
15 Chen S S, Todd I. Enhanced plasticity in the Zr-Cu-Ni-Al-Nb alloy system by in-situ formation of two glassy phases [J]. J. Alloys Compd., 2015, 646: 973
16 Takeuchi A, Inoue A. Classification of bulk metallic glasses by atomic size difference, heat of mixing and period of constituent elements and its application to characterization of the main alloying element [J]. Mater. Trans., 2005, 46: 2817
17 Spaepen F. A microscopic mechanism for steady state inhomogeneous flow in metallic glasses [J]. Acta Metall., 1977, 25: 407
18 Argon A S. Plastic deformation in metallic glasses [J]. Acta Metall., 1979, 27: 47
19 Charalambides M N, Goh S M, Wanigasooriya L, et al. Effect of friction on uniaxial compression of bread dough [J]. J. Mater. Sci., 2005, 40: 3375
20 Sun B A, Pauly S, Hu J, et al. Origin of intermittent plastic flow and instability of shear band sliding in bulk metallic glasses [J]. Phys. Rev. Lett., 2013, 110: 225501
21 Sun B A, Yu H B, Jiao W, et al. Plasticity of ductile metallic glasses: a self-organized critical state [J]. Phys. Rev. Lett., 2010, 105: 035501
22 Lewandowski J J, Greer A L. Temperature rise at shear bands in metallic glasses [J]. Nat. Mater., 2006, 5: 15
23 Wu F F, Zheng W, Wu S D, et al. Shear stability of metallic glasses [J]. Int. J. Plast., 2011, 27: 560
24 Wright W J, Schwarz R B, Nix W D. Localized heating during serrated plastic flow in bulk metallic glasses [J]. Mater. Sci. Eng., 2001, 319-321A: 229
25 Liu C T, Heatherly L, Horton J A, et al. Test environments and mechanical properties of Zr-base bulk amorphous alloys [J]. Metall. Mater. Trans., 1998, 29A: 1811
26 White S H, Burrows S E, Carreras J, et al. On mylonites in ductile shear zones [J]. J. Struct. Geol., 1980, 2: 175
27 Chen M W, Inoue A, Zhang W, et al. Extraordinary plasticity of ductile bulk metallic glasses [J]. Phys. Rev. Lett., 2006, 96: 245502
28 Chen S S, Zhang H R, Todd I. Phase-separation-enhanced plasticity in a Cu47.2Zr46.5Al5.5Nb0.8 bulk metallic glass [J]. Scr. Mater., 2014, 72-73: 47
29 Chen L Y, Fu Z D, Zhang G Q, et al. New class of plastic bulk metallic glass [J]. Phys. Rev. Lett., 2008, 100: 075501
30 Li Y H, Zhang W, Dong C, et al. Unusual compressive plasticity of a centimeter-diameter Zr-based bulk metallic glass with high Zr content [J]. J. Alloys Compd., 2010, 504S: S2
31 Mondal K, Ohkubo T, Toyama T, et al. The effect of nanocrystallization and free volume on the room temperature plasticity of Zr-based bulk metallic glasses [J]. Acta Mater., 2008, 56: 5329
32 Slipenyuk A, Eckert J. Correlation between enthalpy change and free volume reduction during structural relaxation of Zr55Cu30Al10-Ni5 metallic glass [J]. Scr. Mater., 2004, 50: 39
[1] 毛建军, 富童, 潘虎成, 滕常青, 张伟, 谢东升, 吴璐. AlNbMoZrB系难熔高熵合金的Kr离子辐照损伤行为[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] 赵政翔, 廖露海, 徐芳泓, 张威, 李静媛. 超级奥氏体不锈钢24Cr-22Ni-7Mo-0.4N的热变形行为及其组织演变[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] 幸定琴, 涂坚, 罗森, 周志明. C含量对VCoNi中熵合金微观组织和性能的影响[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] 欧阳康昕, 周达, 杨宇帆, 张磊. LPSOMg-Y-Er-Ni合金的组织和拉伸性能[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] 徐利君, 郑策, 冯小辉, 黄秋燕, 李应举, 杨院生. 定向再结晶对热轧态Cu71Al18Mn11合金的组织和超弹性性能的影响[J]. 材料研究学报, 2023, 37(8): 571-580.
[8] 熊诗琪, 刘恩泽, 谭政, 宁礼奎, 佟健, 郑志, 李海英. 固溶处理对一种低偏析高温合金组织的影响[J]. 材料研究学报, 2023, 37(8): 603-613.
[9] 刘继浩, 迟宏宵, 武会宾, 马党参, 周健, 徐辉霞. 喷射成形M3高速钢热处理过程中组织的演变和硬度偏低问题[J]. 材料研究学报, 2023, 37(8): 625-632.
[10] 由宝栋, 朱明伟, 杨鹏举, 何杰. 合金相分离制备多孔金属材料的研究进展[J]. 材料研究学报, 2023, 37(8): 561-570.
[11] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[12] 王昊, 崔君军, 赵明久. 镍基高温合金GH3536带箔材的再结晶与晶粒长大行为[J]. 材料研究学报, 2023, 37(7): 535-542.
[13] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.
[14] 秦鹤勇, 李振团, 赵光普, 张文云, 张晓敏. 固溶温度对GH4742合金力学性能及γ' 相的影响[J]. 材料研究学报, 2023, 37(7): 502-510.
[15] 刘天福, 张滨, 张均锋, 徐强, 宋竹满, 张广平. 缺口应力集中系数对TC4 ELI合金低周疲劳性能的影响[J]. 材料研究学报, 2023, 37(7): 511-522.