Please wait a minute...
材料研究学报  2021, Vol. 35 Issue (11): 811-819    DOI: 10.11901/1005.3093.2021.473
  研究论文 本期目录 | 过刊浏览 |
Co@CNT复合电磁波吸收剂的制备及其吸波性能
朱晓宇1, 邱红芳1, 陈平1,2()
1.大连理工大学化工学院 精细化工国家重点实验室 大连 116024
2.大连理工大学 三束材料改性教育部重点实验室 大连 116024
Preparation and Electromagnetic Wave Absorbing Properties of Composites of Cobalt Coated Graphitic Carbon Nitride Co@CNTs
ZHU Xiaoyu1, QIU Hongfang1, CHEN Ping1,2()
1.State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
2.Key Laboratory of Materials Modification by Laser, Ion and Electron Beams of Ministry of Education, Dalian University of Technology, Dalian 116024, China
引用本文:

朱晓宇, 邱红芳, 陈平. Co@CNT复合电磁波吸收剂的制备及其吸波性能[J]. 材料研究学报, 2021, 35(11): 811-819.
Xiaoyu ZHU, Hongfang QIU, Ping CHEN. Preparation and Electromagnetic Wave Absorbing Properties of Composites of Cobalt Coated Graphitic Carbon Nitride Co@CNTs[J]. Chinese Journal of Materials Research, 2021, 35(11): 811-819.

全文: PDF(10336 KB)   HTML
摘要: 

以石墨相氮化碳(g-C3N4)和六水合硝酸钴为原料制备Co@CNT复合电磁波吸收剂,调节Co元素含量以提高其电磁波吸收性能。采用X射线衍射(XRD)、X射线光电子能谱(XPS)、拉曼光谱、扫描电镜(SEM)、能谱分析(EDS)和透射电镜(TEM)等手段表征其微结构和物相组成,使用矢量网络分析仪测量复合物电磁参数并进行Matlab模拟得到反射损耗图。结果表明,Co@CNT-1与石蜡质量比为1:3的材料,其吸波性能最优,厚度为4.1 mm时对电磁波的吸收最强,最小反射损耗(RLmin)为-45.5 dB;厚度仅为1.5 mm的材料,有效吸收带宽(RL<-10 dB)最大为4.42 GHz。

关键词 复合材料电磁波吸收石墨相氮化碳(g-C3N4)碳纳米管    
Abstract

The composite of cobalt coated graphitic carbon nitride (g-C3N4) (Co@CNT) for electromagnetic wave (EMW) absorption was prepared via two-step process of co-deposition and calcination with graphitic carbon nitride (g-C3N4) and cobalt nitrate hexahydrate as raw materials. The optimal outstanding capacity of EMW absorption of the prepared Co@CNT can be realized through adjusting the Co content of Co@CNTs. The microstructure and phase composition of Co@CNT were characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Raman spectroscopy, scanning electron microscopy (SEM) with Energy Disperse Spectroscopy (EDS) and transmission electron microscopy (TEM). The electromagnetic parameters and reflection loss (RL) of the composite were measured by vector network analyzer and then the reflection loss diagram is acquired by MATLAB simulation. The results show that EMW absorption performance of Co@CNT-1 is the best when it is mixed with paraffin (mass ratio 1:3). The maximum effective absorption bandwidth (RL<-10 dB) is 4.42 GHz, while the minimum reflection loss (RLmin) is up to -45.5 dB, which were measured with a hollow ring of 7 mm in outer diameter and 1.5 mm in thickness.

Key wordscomposite    electromagnetic wave absorption    graphitic carbon nitride (g-C3N4)    carbon nanotube
收稿日期: 2021-08-18     
ZTFLH:  TB332  
基金资助:兴辽英才项目(XLYC1802085);国家自然科学基金(51873109);中央高校基本科研基金(DUT20TD207);大连市科技创新基金重大项目(2019J11CY007);三束材料改性教育部重点实验室基金(KF2004)
作者简介: 朱晓宇,男,1995年生,博士生
图1  Co@CNT-(0.5, 1, 2)的扫描电镜照片、Co@CNT-1的透射电镜图以及Co@CNT-1的SAED模型
图2  Co@CNT-(0.5, 1, 2)的拉曼谱和XRD谱
SampleCCo
Co@CNT-0.552.1247.88
Co@CNT-163.8036.20
Co@CNT-272.3627.64
表1  Co@CNT-(0.5, 1, 2)中C和Co的含量
图3  Co@CNT-1的X射线电子能谱
图4  Co@CNT-0.5、Co@CNT-1以及Co@CNT-2的反射损耗曲线
图5  Co@CNT-(0.5, 1, 2)的电磁参数和损耗因子
图6  Co@CNT-0.5、Co@CNT-1以及Co@CNT-2的Cole-Cole曲线
图7  Co@CNT-(0.5, 1, 2)的C0曲线
图8  Co@CNT-(0.5, 1, 2)的匹配常数Z和衰减常数α
1 Peng H L, Zhang X, Yang H L, et al. Fabrication of core-shell nanoporous carbon@chiral polyschiff base iron(II) composites for high-performance electromagnetic wave attenuation in the low-frequency [J]. J. Alloys Compd., 2021, 850: 156816
2 Zeng Q, Chen P, Yu Q, et al. Self-assembly of graphene hollow microspheres with wideband and controllable microwave absorption properties [J]. Chin. J. Mater. Res., 2018, 32: 119
2 曾 强, 陈 平, 于 祺等. 具有宽频与可控微波吸收性能的石墨烯空心微球的自组装 [J]. 材料研究学报, 2018, 32: 119
3 Chu H R, Chen P, Yu Q, et al. Preparation and microwave absorption properties of FeCo/Graphene [J]. Chin. J. Mater. Res., 2018, 32: 161
3 褚海荣, 陈 平, 于 祺等. FeCo/石墨烯的制备和吸波性能 [J]. 材料研究学报, 2018, 32: 161
4 Zhou W, Long L, Li Y. Mechanical and electromagnetic wave absorption properties of Cf-Si3N4 ceramics with PyC/SiC interphases [J]. J. Mater. Sci. Technol., 2019, 35: 2809
5 Cai Y Z, He P, Shu J C, et al. Structure, electromagnetic properties and microwave absorption performance of two-dimensional transition metal carbides [J]. J. Nat. Sci. Heilongjiang Univ., 2019, 36: 47
5 蔡永珠, 何 朋, 疏金成等. 二维过渡金属碳化物的结构、电磁特性及微波吸收性能 [J]. 黑龙江大学自然科学学报, 2019, 36: 47
6 Liu J L, Chen P, Xu D W, et al. Preparation and microwave absorption properties of magnetic porous RGO@Ni composites [J]. Chin. J. Mater. Res., 2020, 34: 641
6 刘佳良, 陈 平, 徐东卫等. 磁性多孔RGO@Ni复合材料的制备和吸波性能 [J]. 材料研究学报, 2020, 34: 641
7 Wu Q, Wang B L, Fu Y G, et al. MOF-derived Co/CoO particles prepared by low temperature reduction for microwave absorption [J]. Chem. Eng. J., 2021, 410: 128378
8 Wang Y, Gao X, Wu X M, et al. Facile design of 3D hierarchical NiFe2O4/N-GN/ZnO composite as a high performance electromagnetic wave absorber [J]. Chem. Eng. J., 2019, 375: 121942
9 Yang Y N, Xia L, Zhang T, et al. Fe3O4@LAS/RGO composites with a multiple transmission-absorption mechanism and enhanced electromagnetic wave absorption performance [J]. Chem. Eng. J., 2018, 352: 510
10 Cao M S, Wang X X, Zhang M, et al. Electromagnetic response and energy conversion for functions and devices in low-dimensional materials [J]. Adv. Funct. Mater., 2019, 29: 1807398
11 Wang X X, Cao W Q, Cao M S, et al. Assembling nano–microarchitecture for electromagnetic absorbers and smart devices [J]. Adv. Mater., 2020, 32: 2002112
12 Du X, Wang B C, Mu X P, et al. Facile synthesis of carbon-encapsulated Ni nanoparticles embedded into porous graphite sheets as high-performance microwave absorber [J]. ACS Sustainable Chem. Eng., 2018, 6: 16179
13 Ge C Q, Wang L Y, Liu G, et al. Effects of calcination temperature on the electromagnetic properties of carbon nanotubes/indium tin oxide composites [J]. J. Alloys Compd., 2019, 775: 647
14 Zheng Z, Xu B, Huang L, et al. Novel composite of Co/carbon nanotubes: Synthesis, magnetism and microwave absorption properties [J]. Solid State Sci., 2008, 10: 316
15 Liang C, Yu Y, Chen C L, et al. Rational design of CNTs with encapsulated Co nanospheres as superior acidic-and base-resistant microwave absorber [J]. Dalton Trans., 2018, 47: 11554
16 Wei H J, Tian Y, Chen Q, et al. Microwave absorption performance of 2D iron-quinoid MOF [J]. Chem. Eng. J., 2021, 405: 126637
17 Li Y X, Gao T, Zhang W T, et al. Fe@CNx nanocapsules for microwave absorption at gigahertz frequency [J]. ACS Appl. Nano Mater., 2019, 2: 3648
18 Qin Y, Zhang Y, Qi N, et al. Preparation of graphene aerogel with high mechanical stability and microwave absorption ability via combining surface support of metallic-CNTs and interfacial cross-linking by magnetic nanoparticles [J]. ACS Appl. Mater. Interfaces, 2019, 11: 10409
19 Chen Q Q, Li D X, Yang Z H, et al. SiBCN-reduced graphene oxide (rGO) ceramic composites derived from single-source-precursor with enhanced and tunable microwave absorption performance [J]. Carbon, 2021, 179: 180
20 Wang K, Wan G P, Wang G L, et al. The construction of carbon-coated Fe3O4 yolk-shell nanocomposites based on volume shrinkage from the release of oxygen anions for wide-band electromagnetic wave absorption [J]. J. Colloid Interface Sci., 2018, 511: 307
21 Xu H L, Yin X W, Zhu M, et al. Constructing hollow graphene nano-spheres confined in porous amorphous carbon particles for achieving full X band microwave absorption [J]. Carbon, 2019, 142: 346
22 Wu Q L, Wang J, Jin H H, et al. Facile synthesis of Co-embedded porous spherical carbon composites derived from Co3O4/ZIF-8 compounds for broadband microwave absorption [J]. Compos. Sci. Technol., 2020, 195: 108206
23 Wang F Y, Li X Z, Chen Z H, et al. Efficient low-frequency microwave absorption and solar evaporation properties of γ-Fe2O3 nanocubes/graphene composites [J]. Chem. Eng. J., 2021, 405: 126676
24 Huang Z D, Ma R, Zhou J, et al. Investigation on microstructures, electronic structures, electromagnetic properties and microwave absorption properties of Fe3Si/PPy composites [J]. J. Alloys Compd., 2021, 873: 159779
25 Liu D W, Du Y C, Xu P, et al. Waxberry-like hierarchical Ni@C microspheres with high-performance microwave absorption [J]. J. Mater. Chem., 2019, 7C: 5037
26 Cao M S, Song W L, Hou Z L, et al. The effects of temperature and frequency on the dielectric properties, electromagnetic interference shielding and microwave-absorption of short carbon fiber/silica composites [J]. Carbon, 2010, 48: 788
27 Wang P, Wang G W, Zhang J M, et al. Excellent microwave absorbing performance of the sandwich structure absorber Fe@B2O3/MoS2/Fe@B2O3 in the Ku-band and X-band [J]. Chem. Eng. Technol., 2020, 382: 122804
28 Yin P F, Deng Y, Zhang L M, et al. Facile synthesis and microwave absorption investigation of activated carbon@Fe3O4 composites in the low frequency band [J]. RSC Adv., 2018, 8: 23048
29 Cao M S, Wang X X, Cao W Q, et al. Thermally driven transport and relaxation switching self-powered electromagnetic energy conversion [J]. Small, 2018, 14: 1800987
30 Sun J C, He Z D, Dong W J, et al. Broadband and strong microwave absorption of Fe/Fe3C/C core-shell spherical chains enhanced by dual dielectric relaxation and dual magnetic resonances [J]. J. Alloys Compd., 2019, 782: 193
31 Xiang J, Hou Z R, Zhang X K, et al. Facile synthesis and enhanced microwave absorption properties of multiferroic Ni0.4Co0.2Zn0.4Fe2O4/BaTiO3 composite fibers [J]. J. Alloys Compd., 2018, 737: 412
[1] 潘新元, 蒋津, 任云飞, 刘莉, 李景辉, 张明亚. 热挤压钛/钢复合管的微观组织和性能[J]. 材料研究学报, 2023, 37(9): 713-720.
[2] 刘瑞峰, 仙运昌, 赵瑞, 周印梅, 王文先. 钛合金/不锈钢复合板的放电等离子烧结技术制备及其性能[J]. 材料研究学报, 2023, 37(8): 581-589.
[3] 季雨辰, 刘树和, 张天宇, 查成. MXene在锂硫电池中应用的研究进展[J]. 材料研究学报, 2023, 37(7): 481-494.
[4] 王伟, 解泽磊, 屈怡珅, 常文娟, 彭怡晴, 金杰, 王快社. Graphene/SiO2 纳米复合材料作为水基润滑添加剂的摩擦学性能[J]. 材料研究学报, 2023, 37(7): 543-553.
[5] 张藤心, 王函, 郝亚斌, 张建岗, 孙新阳, 曾尤. 基于界面氢键结构的石墨烯/聚合物复合材料的阻尼性能[J]. 材料研究学报, 2023, 37(6): 401-407.
[6] 邵萌萌, 陈招科, 熊翔, 曾毅, 王铎, 王徐辉. C/C-ZrC-SiC复合材料的Si2+ 离子辐照行为[J]. 材料研究学报, 2023, 37(6): 472-480.
[7] 张锦中, 刘晓云, 杨健茂, 周剑锋, 查刘生. 温度响应性双面纳米纤维的制备和性能[J]. 材料研究学报, 2023, 37(4): 248-256.
[8] 王刚, 杜雷雷, 缪自强, 钱凯成, 杜向博文, 邓泽婷, 李仁宏. 聚多巴胺改性碳纤维增强尼龙6复合材料的界面性能[J]. 材料研究学报, 2023, 37(3): 203-210.
[9] 林师峰, 徐东安, 庄艳歆, 张海峰, 朱正旺. TiZr基非晶/TC21双层复合材料的制备和力学性能[J]. 材料研究学报, 2023, 37(3): 193-202.
[10] 苗琪, 左孝青, 周芸, 王应武, 郭路, 王坦, 黄蓓. 304不锈钢纤维/ZL104铝合金复合泡沫的孔结构、力学、吸声性能及其机理[J]. 材料研究学报, 2023, 37(3): 175-183.
[11] 罗昱, 陈秋云, 薛丽红, 张五星, 严有为. 钠离子电池双层碳包覆Na3V2(PO4)3 正极材料的超声辅助溶液燃烧合成及其电化学性能[J]. 材料研究学报, 2023, 37(2): 129-135.
[12] 张开银, 王秋玲, 向军. FeCo/SnO2 复合纳米纤维的制备及其吸波性能[J]. 材料研究学报, 2023, 37(2): 102-110.
[13] 周聪, 昝宇宁, 王东, 王全兆, 肖伯律, 马宗义. (Al11La3+Al2O3)/Al复合材料的高温性能及其强化机制[J]. 材料研究学报, 2023, 37(2): 81-88.
[14] 谢东航, 潘冉, 朱士泽, 王东, 刘振宇, 昝宇宁, 肖伯律, 马宗义. 增强颗粒尺寸对B4C/Al-Zn-Mg-Cu复合材料微观组织及力学性能的影响[J]. 材料研究学报, 2023, 37(10): 731-738.
[15] 刘志华, 岳远超, 丘一帆, 卜湘, 阳涛. g-C3N4/Ag/BiOBr复合材料的制备及其光催化还原硝酸盐氮[J]. 材料研究学报, 2023, 37(10): 781-790.