材料研究学报, 2021, 35(11): 811-819 DOI: 10.11901/1005.3093.2021.473

研究论文

Co@CNT复合电磁波吸收剂的制备及其吸波性能

朱晓宇1, 邱红芳1, 陈平,1,2

1.大连理工大学化工学院 精细化工国家重点实验室 大连 116024

2.大连理工大学 三束材料改性教育部重点实验室 大连 116024

Preparation and Electromagnetic Wave Absorbing Properties of Composites of Cobalt Coated Graphitic Carbon Nitride Co@CNTs

ZHU Xiaoyu1, QIU Hongfang1, CHEN Ping,1,2

1.State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China

2.Key Laboratory of Materials Modification by Laser, Ion and Electron Beams of Ministry of Education, Dalian University of Technology, Dalian 116024, China

通讯作者: 陈平,教授,pchen@dlut.edu.cn,研究方向为高性能高分子材料、 先进聚合物基复合材料与功能一体化设计与制备

收稿日期: 2021-08-18   修回日期: 2021-08-30   网络出版日期: 2021-11-30

基金资助: 兴辽英才项目.  XLYC1802085
国家自然科学基金.  51873109
中央高校基本科研基金.  DUT20TD207
大连市科技创新基金重大项目.  2019J11CY007
三束材料改性教育部重点实验室基金.  KF2004

Corresponding authors: CHEN Ping, Tel:(411)84986100, E-mail:pchen@dlut.edu.cn

Received: 2021-08-18   Revised: 2021-08-30   Online: 2021-11-30

作者简介 About authors

朱晓宇,男,1995年生,博士生

摘要

以石墨相氮化碳(g-C3N4)和六水合硝酸钴为原料制备Co@CNT复合电磁波吸收剂,调节Co元素含量以提高其电磁波吸收性能。采用X射线衍射(XRD)、X射线光电子能谱(XPS)、拉曼光谱、扫描电镜(SEM)、能谱分析(EDS)和透射电镜(TEM)等手段表征其微结构和物相组成,使用矢量网络分析仪测量复合物电磁参数并进行Matlab模拟得到反射损耗图。结果表明,Co@CNT-1与石蜡质量比为1:3的材料,其吸波性能最优,厚度为4.1 mm时对电磁波的吸收最强,最小反射损耗(RLmin)为-45.5 dB;厚度仅为1.5 mm的材料,有效吸收带宽(RL<-10 dB)最大为4.42 GHz。

关键词: 复合材料 ; 电磁波吸收 ; 石墨相氮化碳(g-C3N4) ; 碳纳米管

Abstract

The composite of cobalt coated graphitic carbon nitride (g-C3N4) (Co@CNT) for electromagnetic wave (EMW) absorption was prepared via two-step process of co-deposition and calcination with graphitic carbon nitride (g-C3N4) and cobalt nitrate hexahydrate as raw materials. The optimal outstanding capacity of EMW absorption of the prepared Co@CNT can be realized through adjusting the Co content of Co@CNTs. The microstructure and phase composition of Co@CNT were characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Raman spectroscopy, scanning electron microscopy (SEM) with Energy Disperse Spectroscopy (EDS) and transmission electron microscopy (TEM). The electromagnetic parameters and reflection loss (RL) of the composite were measured by vector network analyzer and then the reflection loss diagram is acquired by MATLAB simulation. The results show that EMW absorption performance of Co@CNT-1 is the best when it is mixed with paraffin (mass ratio 1:3). The maximum effective absorption bandwidth (RL<-10 dB) is 4.42 GHz, while the minimum reflection loss (RLmin) is up to -45.5 dB, which were measured with a hollow ring of 7 mm in outer diameter and 1.5 mm in thickness.

Keywords: composite ; electromagnetic wave absorption ; graphitic carbon nitride (g-C3N4) ; carbon nanotube

PDF (10336KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

朱晓宇, 邱红芳, 陈平. Co@CNT复合电磁波吸收剂的制备及其吸波性能. 材料研究学报[J], 2021, 35(11): 811-819 DOI:10.11901/1005.3093.2021.473

ZHU Xiaoyu, QIU Hongfang, CHEN Ping. Preparation and Electromagnetic Wave Absorbing Properties of Composites of Cobalt Coated Graphitic Carbon Nitride Co@CNTs. Chinese Journal of Materials Research[J], 2021, 35(11): 811-819 DOI:10.11901/1005.3093.2021.473

电磁波产生的辐射,有害人身健康[1~5]。传统电磁波吸收材料已经不能满足需要,因此研发“宽,薄,轻,强”的电磁波吸收剂极为迫切[6~11]

碳纳米管(CNT)具有独特的结构、低密度和优异的力学、热学和电磁学性能,可用于电磁波吸收[12,13]。Zheng等用沉淀法和水热法制备的Co/CNT复合物,其最大有效吸收带宽超过3 GHz, 最大吸收强度超过-15 dB[14]。Liang等热解ZIF-67制备Co@CNTs,填充量为30%(质量分数)时最大有效吸收带宽为6.24 GHz[15]。单一吸收损耗机制和较差的阻抗匹配性,不利于其成为高性能电磁波吸收剂,与高阻抗匹配性的磁性粒子复合可提高其综合吸波性能[16]

碳纳米管的化学性质稳定但是不易与磁性粒子复合,而磁性粒子极易团聚不利于分散。将碳纳米管与磁性粒子共混,化学改性碳纳米管使其表面具有活性基团,进行气相沉积使磁性金属催化有机物形成碳纳米管,可制备出磁性粒子与碳纳米管复合物。磁性金属催化有机物形成碳纳米管,操作简单且易于大量生产。鉴于此,本文将三聚氰胺制成石墨相氮化碳(g-C3N4),利用其表面呈负电性将Co2+均匀吸附于表面,制备出Co2+/g-C3N4。高温热处理Co2+/g-C3N4使Co2+还原为钴粒子而在g-C3N4表面生成CNT制备Co@CNT,研究其电磁波吸收性能并揭示其机制。

1 实验方法

1.1 g-C3N4的制备

用热聚合方法制备g-C3N4。将适量的三聚氰胺(C3N6H6)放入陶瓷方舟后置于管式炉中,以5℃/min的速率升温至500℃,加热2 h后冷却至室温,得到g-C3N4黄色固体。

1.2 Co@CNT的制备

将1.0 g的g-C3N4粉末分散在去离子水中,超声搅拌30 min后加入2.0 g的六水合硝酸钴(Co(NO3)2∙6H2O),继续超声搅拌5 min。将得到的溶液置于真空烘箱中烘干,将所得固体粉末放入陶瓷方舟并置于管式炉中,煅烧,以5℃/min的速率升温至700℃煅烧2 h,炉冷至室温后得到Co@CNT-0.5黑色粉末。

为了对比不同Co含量的Co@CNT吸波性能,用相同的工艺而将Co(NO3)2∙6H2O的加入量分别改为1.0 g 和0.5 g,将得到的产物分别记为Co@CNT-1和Co@CNT-2。

1.3 性能表征

X射线光电子衍射仪(Thermo Fisher ESCALAB XI+i)测试样品表面化学元素组成;用激光共聚焦显微拉曼光谱仪(Thermo Fisher的DXR Microscope型,激光波长λ=532 nm)测试样品在800~2200 cm-1的拉曼谱。用X射线衍射仪(Smart Lab 9kW型,Cu靶为射线源,波长λ=0.15418 nm,扫描速度为10°/min)表征样品的组分构成和晶体结构。用扫描电镜(NOVA NanoSEM 450型,室温,10 kV加速电压)观察样品表面形貌特征,并与能谱仪联用表征产物中元素含量。用透射电镜(Tecnai G2 F30 S-Twin型,100 kV加速电压)观察样品的内部结构特征。用矢量网络分析仪(Aglilent 8720ET)测试1~18 GHz内样品的电磁参数,将待测样品与石蜡均匀混合(质量比:样品/石蜡=1/3)后制成空心圆环(内径:3.04 mm,外径:7.0 mm,厚度:3.0 mm)用于测试。

2 结果和讨论

2.1 Co@CNT的形貌和微观结构

图1给出了典型的Co@CNT的扫描电镜(SEM)和透射电镜(TEM)照片。图1a~c分别对应Co@CNT-(0.5, 1, 2)的扫描电镜照片。从图1a可见碳纳米管并不明显,因为碳源g-C3N4的含量较低;与图1b 相比,图1c中碳纳米管表面的物质可能是无定形碳。由于钴含量较低,部分g-C3N4未转化为碳纳米管。图1d~f给出了Co@CNT-1的TEM照片,其中图1e的晶格衍射条纹间距为0.340 nm和0.204 nm,分别对应石墨碳(0 0 2)晶面和Co(1 1 1)晶面,图1f中的SAED模型与石墨碳和Co的晶面指数吻合。可以看出,Co@CNT由CNT和Co构成,其结构是CNT包覆Co。

图1

图1   Co@CNT-(0.5, 1, 2)的扫描电镜照片、Co@CNT-1的透射电镜图以及Co@CNT-1的SAED模型

Fig.1   SEM images of Co@CNT-(0.5, 1, 2) (a~c), TEM image of Co@CNT-1 (d~f) and SAED patterns of Co@CNT-1 (f)


2.2 Co@CNT的物相组成

拉曼光谱可用来分析类石墨材料的石墨化程度,其中1350 cm-1附近的峰称为D峰,源于碳材料中碳原子的晶格缺陷;1580 cm-1附近的峰成为G峰,对应sp2杂化碳原子的面内振动,通常用D峰和G峰强度比即ID/IG表征材料的石墨化程度。ID/IG的值越大,则相应的碳材料石墨化程度越低[17~20]。由图2a可见,Co@CNT-0.5的石墨化程度最低。其原因是,过量的Co破坏了碳原子的晶格。而Co@CNT-2的石墨化程度略低于Co@CNT-1,因为Co的含量偏低,部分碳未转化成类石墨碳。图2b给出了Co@CNT-(0.5, 1, 2)的XRD谱。=21.4°附近的衍射峰对应CNT的石墨碳(0 0 2)晶面,=44.2°、51.5°、75.8°的衍射峰分别对应钴单质的(1 1 1)、(2 0 0) 、(2 2 0)晶面(PDF#89-7093),结果与透射电镜的结果和SAED模型吻合。Co@CNT-(0.5, 1, 2)三者谱图峰位置保持一致,进一步表明Co@CNT是由Co和CNT构成的。

图2

图2   Co@CNT-(0.5, 1, 2)的拉曼谱和XRD谱

Fig.2   Raman spectra (a) and XRD of Co@CNT-(0.5, 1, 2) (b)


用EDS能谱表征Co@CNT-(0.5, 1, 2)中元素的含量,结果列于表1。可以看出,随着前驱体Co2+/g-C3N4中Co元素含量的提高,产物Co@CNT中Co的含量随之提高。

表1   Co@CNT-(0.5, 1, 2)中C和Co的含量

Table 1  Amount of C and Co of Co@CNT-(0.5, 1, 2) (mass fraction, %)

SampleCCo
Co@CNT-0.552.1247.88
Co@CNT-163.8036.20
Co@CNT-272.3627.64

新窗口打开| 下载CSV


为了进一步分析Co@CNT的元素构成和价态信息,用X射线光电子能谱表征Co@CNT表面元素,结果在图3中给出。图3a给出了Co@CNT的XPS能谱全谱。可以看出,Co@CNT的组成元素包括C、N、O、Co与XRD谱的结果吻合。图3b给出了C 1s的分峰拟合谱图,拟合曲线峰对应的电子结合能分别为284.7、285.6、288.1 eV分别为C-C/C=C、C-N、O-C=O;图3c给出了N 1s的分峰拟合谱图,拟合曲线峰对应的电子结合能分别为398.8、400.9、402.1 eV,分别对应吡啶氮、吡咯氮、石墨氮;图3d给出了O 1s的分峰拟合谱图,拟合曲线峰电子结合能为530.3、531.4、532.2、533.4 eV,分别对应晶格氧,氧空穴,C=O,C-O,其中晶格氧和氧空穴的产生可能源于表面Co单质被氧化;图3e给出了Co 2p的分峰拟合谱图,包含Co 2p1/2和Co 2p3/2,可进一步分为Co0、Co2+、Co3+以及两个卫星峰,相应的电子结合能为Co0(779.0 eV),Co2+ (780.3、794.8 eV),Co3+ (782.2、796.6 eV),卫星峰 (786.3、801.7eV),其中Co2+,Co3+都源于Co单质被氧化[21,22]。Co氧化成Co2+和Co3+,使材料的磁性降低。磁损耗降低不利于材料对电磁波的衰减,然而氧化只是少量的,对材料综合吸波性能的影响不大。

图3

图3   Co@CNT-1的X射线电子能谱

Fig.3   XPS spectra of Co@CNT-1 (a) survey, (b) C 1s, (c) N 1s, (d) O 1s and (e) Co 2p


2.3 Co@CNT的电磁参数和吸波性能

根据传输线理论,可根据材料的电磁参数(εr=ε'+jε"μr=μ'+jμ")计算材料的反射损耗值(RL),具体公式为[23]

RL(dB)=20lgzin-zozin+zo

其中

Zin=Z0μr/εrtanh(j2πfdcμrεr)

式中Zin为材料的本征阻抗;Zo为空气的本征阻抗,εrμr 分别为材料的复介电常数和复磁导率;f为电磁波频率;d为材料对应的厚度;c为真空光速。

图4给出了25%的Co@CNT-(0.5, 1, 2)及75%的石蜡混合物的模拟计算反射曲线,其中图4a、b对应Co@CNT-0.5;图4d、e对应Co@CNT-1;图4e、f对应Co@CNT-2。由图4可见,Co@CNT-0.5的最小反射值(RLmin)为-37.91 dB,最大有效吸收带宽(RL<-10 dB)为3.57 GHz (9.16~12.73 GHz),对应的材料厚度为2.9 mm;Co@CNT-1的RLmin为-45.50 dB,对应厚度为4.1 mm,最大有效吸收带宽为4.42 GHz (13.58~18 GHz),相应厚度仅为1.5 mm。Co@CNT-2的最小反射值(RLmin)为-15.31dB,最大有效吸收带宽仅为1.62 GHz (15.11~16.73 GHz),相应的材料厚度为5.0 mm。综合上述吸波性能的分析,上述三组样品都具有一定的电磁波吸收性能,其中Co@CNT-1的吸波性能最高。

图4

图4   Co@CNT-0.5、Co@CNT-1以及Co@CNT-2的反射损耗曲线

Fig.4   RL curves of Co@CNT-0.5 (a-b), Co@CNT-1(c-d), Co@CNT-2 (e-f)


图5a~d表明,Co@CNT-(0.5, 1, 2)的复介电常数(εr)和复磁导率(μr)均有较强的频率依赖性,与多数碳材料相同。复介电常数和复磁导率的实部分别表征材料储存电能和磁能的能力,而虚部则分别表征材料耗散电能及磁能的能力[24]。复介电常数虚部曲线上的回弹峰,源于偶极极化和界面极化等介电损耗机制,而复磁导率虚部的回弹峰则源于自然共振、交换共振以及涡流损耗等磁损耗机制。这几个样品介电常数实部和虚部大小的排序,Co@CNT-1最大,Co@CNT-2次之,Co@CNT-0.5最小。其中Co@CNT-0.5的碳组分含量最低,因此其介电常数最小,而Co@CNT-2虽然其碳组分含量最高,但因其Co含量不高而不能将碳转换成介电性能优异的类石墨碳,使其介电常数反而低于Co@CNT-1。与介电常数相比,这几个样品的磁导率差距较小,Co@CNT-0.5的复磁导率虚部最大,Co@CNT-1次之,Co@CNT-2最低,与其Co含量的高低一致。在高频下部分磁导率的虚部为负值,其原因是电、磁能相互转化。在高频下电能转换为磁能不能被材料完全吸收而辐射出去,而使其磁导率虚部成为负值。用tan δε(ε"/ε')和tan δμ(μ"/μ')分别描述材料的介电损耗和磁损耗能力,在整体上Co@CNT-(0.5, 1, 2)的tan δε值均明显高于tan δμ值,表明介电损耗是主要的电磁波吸收机制。

图5

图5   Co@CNT-(0.5, 1, 2)的电磁参数和损耗因子

Fig.5   Electromagnetic parameters and loss factor of Co@CNT-(0.5, 1, 2) (a) real part ε', (b) imaginary part ε", (c) real part μ', (d) imaginary part μ", (e) dielectric loss tangent tan δε, (f) tangent of magnetic loss tan δμ


2.4 Co@CNT的吸波机制

材料的吸波机制分为介电损耗和磁损耗,介电损耗包括电子极化、离子极化、偶极子极化、界面极化以及电导损耗。频率为1~18 GHz时电子极化和离子极化几乎不损耗能量,可以忽略。磁损耗包括自然共振、交换共振、涡流损耗、畴壁共振以及磁滞损耗等,频率为1~18 GHz时畴壁共振和磁滞损耗也可忽略[25,26]

根据徳拜松弛理论,材料ε'ε"的关系为[27]

(ε'-εs+ε2)2+(ε)2=(εs+ε2)2

式中εsε分别为材料静态介电常数和超高极限频率下的介电常数。

在理论上,当材料中只有偶极子极化时其Cole-Cole曲线应为半环型,即一种偶极子对应一个Cole-Cole半环。图6给出了Co@CNT-(0.5, 1, 2)的Cole-Cole曲线,可见其均由半环形曲线和不规则的曲线构成。这表明,Co@CNT的极化损耗不只有偶极子极化,还有界面极化。而曲线末端出现直线“尾巴”的原因是,强电导损耗掩盖了其他极化损耗,表明Co@CNT中多种损耗机制并存[28,29]

图6

图6   Co@CNT-0.5、Co@CNT-1以及Co@CNT-2的Cole-Cole曲线

Fig.6   Cole-Cole plots of Co@CNT-0.5 (a), Co@CNT-1 (b) and Co@CNT-2 (c)


根据Co@CNT-(0.5, 1, 2)复磁导率C0(μ"(μ')-2f -1)的计算值,相应的曲线如图7所示。涡流损耗为主要磁损耗机制时,C0值为常数。由图7可以看出,C0曲线出现了明显的波动,在4.5 GHz处出现峰的主要原因是自然共振,而在高频(10~18 GHz)出现的波动可能是由于交换共振。

图7

图7   Co@CNT-(0.5, 1, 2)的C0曲线

Fig.7   C0 curves of Co@CNT-(0.5, 1, 2)


综上所述,Co@CNT-(0.5, 1, 2)的吸波机制包括偶极子极化、界面极化、电导损耗、自然共振、交换共振以及涡流损耗,多重吸波机制的协同作用使其具有优异的电磁波吸收性能[30]

图8

图8   Co@CNT-(0.5, 1, 2)的匹配常数Z和衰减常数α

Fig.8   Z curves (a) and α curves (b) of Co@CNT-(0.5, 1, 2)


2.5 Co@CNT的阻抗匹配常数和衰减常数

为了使材料具有较高的电磁波吸收性能,一方面使电磁波尽可能进入材料内部,另一方面使材料能充分耗散入射的电磁波能量。阻抗配常数(Z)表征电磁波进入材料内部的能力,其数值越接近1表示电磁波越容易进入材料内部。用衰减常数(α)描述材料消耗电磁波的能力,其数值越大表明对电磁波耗散能力越强。只有最适当的Zα值才能使材料具有最佳的吸波性能,其值为[31]

Z=μr/εr
α=2πfcεμ-ε'μ'+(εμ-ε'μ')2+(ε'μ+εμ')2

3 结论

先以三聚氰胺为原料制备出g-C3N4,然后加入Co(NO3)2∙6H2O制备出不同钴含量的前驱体Co2+/g-C3N4,将前驱体煅烧后在g-C3N4表面生成CNT而成为电磁波吸收剂Co@CNT复合物。g-C3N4与Co(NO3)2∙6H2O质量比为1∶1的Co@CNT-1吸波性能最佳,其最小反射值(RLmin)为-44.50 dB,匹配厚度为1.5 mm时最大有效吸收带宽为4.42 GHz。多重损耗机制的协同作用,使Co@CNT具有良好的电磁波吸收性能。

参考文献

Peng H L, Zhang X, Yang H L, et al.

Fabrication of core-shell nanoporous carbon@chiral polyschiff base iron(II) composites for high-performance electromagnetic wave attenuation in the low-frequency

[J]. J. Alloys Compd., 2021, 850: 156816

[本文引用: 1]

Zeng Q, Chen P, Yu Q, et al.

Self-assembly of graphene hollow microspheres with wideband and controllable microwave absorption properties

[J]. Chin. J. Mater. Res., 2018, 32: 119

曾 强, 陈 平, 于 祺.

具有宽频与可控微波吸收性能的石墨烯空心微球的自组装

[J]. 材料研究学报, 2018, 32: 119

Chu H R, Chen P, Yu Q, et al.

Preparation and microwave absorption properties of FeCo/Graphene

[J]. Chin. J. Mater. Res., 2018, 32: 161

褚海荣, 陈 平, 于 祺.

FeCo/石墨烯的制备和吸波性能

[J]. 材料研究学报, 2018, 32: 161

Zhou W, Long L, Li Y.

Mechanical and electromagnetic wave absorption properties of Cf-Si3N4 ceramics with PyC/SiC interphases

[J]. J. Mater. Sci. Technol., 2019, 35: 2809

Cai Y Z, He P, Shu J C, et al.

Structure, electromagnetic properties and microwave absorption performance of two-dimensional transition metal carbides

[J]. J. Nat. Sci. Heilongjiang Univ., 2019, 36: 47

[本文引用: 1]

蔡永珠, 何 朋, 疏金成.

二维过渡金属碳化物的结构、电磁特性及微波吸收性能

[J]. 黑龙江大学自然科学学报, 2019, 36: 47

[本文引用: 1]

Liu J L, Chen P, Xu D W, et al.

Preparation and microwave absorption properties of magnetic porous RGO@Ni composites

[J]. Chin. J. Mater. Res., 2020, 34: 641

[本文引用: 1]

刘佳良, 陈 平, 徐东卫.

磁性多孔RGO@Ni复合材料的制备和吸波性能

[J]. 材料研究学报, 2020, 34: 641

[本文引用: 1]

Wu Q, Wang B L, Fu Y G, et al.

MOF-derived Co/CoO particles prepared by low temperature reduction for microwave absorption

[J]. Chem. Eng. J., 2021, 410: 128378

Wang Y, Gao X, Wu X M, et al.

Facile design of 3D hierarchical NiFe2O4/N-GN/ZnO composite as a high performance electromagnetic wave absorber

[J]. Chem. Eng. J., 2019, 375: 121942

Yang Y N, Xia L, Zhang T, et al.

Fe3O4@LAS/RGO composites with a multiple transmission-absorption mechanism and enhanced electromagnetic wave absorption performance

[J]. Chem. Eng. J., 2018, 352: 510

Cao M S, Wang X X, Zhang M, et al.

Electromagnetic response and energy conversion for functions and devices in low-dimensional materials

[J]. Adv. Funct. Mater., 2019, 29: 1807398

Wang X X, Cao W Q, Cao M S, et al.

Assembling nano–microarchitecture for electromagnetic absorbers and smart devices

[J]. Adv. Mater., 2020, 32: 2002112

[本文引用: 1]

Du X, Wang B C, Mu X P, et al.

Facile synthesis of carbon-encapsulated Ni nanoparticles embedded into porous graphite sheets as high-performance microwave absorber

[J]. ACS Sustainable Chem. Eng., 2018, 6: 16179

[本文引用: 1]

Ge C Q, Wang L Y, Liu G, et al.

Effects of calcination temperature on the electromagnetic properties of carbon nanotubes/indium tin oxide composites

[J]. J. Alloys Compd., 2019, 775: 647

[本文引用: 1]

Zheng Z, Xu B, Huang L, et al.

Novel composite of Co/carbon nanotubes: Synthesis, magnetism and microwave absorption properties

[J]. Solid State Sci., 2008, 10: 316

[本文引用: 1]

Liang C, Yu Y, Chen C L, et al.

Rational design of CNTs with encapsulated Co nanospheres as superior acidic-and base-resistant microwave absorber

[J]. Dalton Trans., 2018, 47: 11554

[本文引用: 1]

Wei H J, Tian Y, Chen Q, et al.

Microwave absorption performance of 2D iron-quinoid MOF

[J]. Chem. Eng. J., 2021, 405: 126637

[本文引用: 1]

Li Y X, Gao T, Zhang W T, et al.

Fe@CNx nanocapsules for microwave absorption at gigahertz frequency

[J]. ACS Appl. Nano Mater., 2019, 2: 3648

[本文引用: 1]

Qin Y, Zhang Y, Qi N, et al.

Preparation of graphene aerogel with high mechanical stability and microwave absorption ability via combining surface support of metallic-CNTs and interfacial cross-linking by magnetic nanoparticles

[J]. ACS Appl. Mater. Interfaces, 2019, 11: 10409

Chen Q Q, Li D X, Yang Z H, et al.

SiBCN-reduced graphene oxide (rGO) ceramic composites derived from single-source-precursor with enhanced and tunable microwave absorption performance

[J]. Carbon, 2021, 179: 180

Wang K, Wan G P, Wang G L, et al.

The construction of carbon-coated Fe3O4 yolk-shell nanocomposites based on volume shrinkage from the release of oxygen anions for wide-band electromagnetic wave absorption

[J]. J. Colloid Interface Sci., 2018, 511: 307

[本文引用: 1]

Xu H L, Yin X W, Zhu M, et al.

Constructing hollow graphene nano-spheres confined in porous amorphous carbon particles for achieving full X band microwave absorption

[J]. Carbon, 2019, 142: 346

[本文引用: 1]

Wu Q L, Wang J, Jin H H, et al.

Facile synthesis of Co-embedded porous spherical carbon composites derived from Co3O4/ZIF-8 compounds for broadband microwave absorption

[J]. Compos. Sci. Technol., 2020, 195: 108206

[本文引用: 1]

Wang F Y, Li X Z, Chen Z H, et al.

Efficient low-frequency microwave absorption and solar evaporation properties of γ-Fe2O3 nanocubes/graphene composites

[J]. Chem. Eng. J., 2021, 405: 126676

[本文引用: 1]

Huang Z D, Ma R, Zhou J, et al.

Investigation on microstructures, electronic structures, electromagnetic properties and microwave absorption properties of Fe3Si/PPy composites

[J]. J. Alloys Compd., 2021, 873: 159779

[本文引用: 1]

Liu D W, Du Y C, Xu P, et al.

Waxberry-like hierarchical Ni@C microspheres with high-performance microwave absorption

[J]. J. Mater. Chem., 2019, 7C: 5037

[本文引用: 1]

Cao M S, Song W L, Hou Z L, et al.

The effects of temperature and frequency on the dielectric properties, electromagnetic interference shielding and microwave-absorption of short carbon fiber/silica composites

[J]. Carbon, 2010, 48: 788

[本文引用: 1]

Wang P, Wang G W, Zhang J M, et al.

Excellent microwave absorbing performance of the sandwich structure absorber Fe@B2O3/MoS2/Fe@B2O3 in the Ku-band and X-band

[J]. Chem. Eng. Technol., 2020, 382: 122804

[本文引用: 1]

Yin P F, Deng Y, Zhang L M, et al.

Facile synthesis and microwave absorption investigation of activated carbon@Fe3O4 composites in the low frequency band

[J]. RSC Adv., 2018, 8: 23048

[本文引用: 1]

Cao M S, Wang X X, Cao W Q, et al.

Thermally driven transport and relaxation switching self-powered electromagnetic energy conversion

[J]. Small, 2018, 14: 1800987

[本文引用: 1]

Sun J C, He Z D, Dong W J, et al.

Broadband and strong microwave absorption of Fe/Fe3C/C core-shell spherical chains enhanced by dual dielectric relaxation and dual magnetic resonances

[J]. J. Alloys Compd., 2019, 782: 193

[本文引用: 1]

Xiang J, Hou Z R, Zhang X K, et al.

Facile synthesis and enhanced microwave absorption properties of multiferroic Ni0.4Co0.2Zn0.4Fe2O4/BaTiO3 composite fibers

[J]. J. Alloys Compd., 2018, 737: 412

[本文引用: 1]

/