Please wait a minute...
材料研究学报  2021, Vol. 35 Issue (10): 769-777    DOI: 10.11901/1005.3093.2021.138
  研究论文 本期目录 | 过刊浏览 |
X90高强管线钢的应变时效行为和敏感温度
杨军1(), 毕宗岳2, 南黄河1, 刘海璋2
1.陕西铁路工程职业技术学院 渭南 714099
2.宝鸡石油钢管有限责任公司 宝鸡 721008
Investigation of Strain Aging Behavior and Sensitive Temperature of X90 High Strength Pipeline Steel
YANG Jun1(), BI Zongyue2, NAN Huanghe1, LIU Haizhang2
1.Shaanxi Railway Institute, Weinan 714000, China
2.Baoji Petroleum Steel Pipe Co. Ltd. , Baoji 721008, China
引用本文:

杨军, 毕宗岳, 南黄河, 刘海璋. X90高强管线钢的应变时效行为和敏感温度[J]. 材料研究学报, 2021, 35(10): 769-777.
Jun YANG, Zongyue BI, Huanghe NAN, Haizhang LIU. Investigation of Strain Aging Behavior and Sensitive Temperature of X90 High Strength Pipeline Steel[J]. Chinese Journal of Materials Research, 2021, 35(10): 769-777.

全文: PDF(3320 KB)   HTML
摘要: 

用光学显微镜(OM)、扫描电镜(SEM)、透射电镜(TEM)观察应变时效处理前后X90高强管线钢的微观组织和冲击断口形貌,进行拉伸实验和Charpy冲击实验测定其拉伸性能和低温冲击性能,研究了这种钢的应变时效行为。结果表明,X90高强管线钢对应变时效比较敏感,敏感温度点为423.15 K。在高于敏感温度点的温度进行时效处理后材料失去连续屈服和强化特性,拉伸曲线由时效前的“Round House”拱顶型转变成为吕德斯型屈服曲线。对于确定的时效时间(tag=5 min),随时效温度Tag的提高X90钢的屈服强度Rp0.2、抗拉强度Rm和屈强比Rp0.2/Rm均呈现提高的趋势,均匀延伸率UEL、断裂应变εf、低温冲击吸收总功Ak、裂纹形成功Ai和裂纹扩展功Ap均呈现减小的趋势。时效处理前后这种钢的显微组织没有明显的差异,均为细小针状铁素体+多边形铁素体+板条贝氏体+M-A组元组成的复相组织。预应变和时效处理是管材发生应变时效的主要诱因,生产中可用柔性校平法取代刚性辊压校平法,多步渐进成型法取代一步螺旋成型法控制预应变量;另外,在保证防腐质量的前提下可降低防腐处理温度(小于423.15 K)以降低温度的影响。

关键词 金属材料力学性能X90管线钢应变时效敏感温度微观组织    
Abstract

The microstructure characteristics, fracture morphology, tensile properties, impact toughness at low temperature, and strain aging behavior of X90 high-strength pipeline steel were investigated by OM, SEM, TEM, tensile test and Charpy impact test. The results show that X90 high-strength pipeline steel is rather sensitive to strain aging with a sensitive temperature of 423.15 K. After aging treatment above 423.15 K, the X90 pipeline steel loses continuous yielding and strengthening characteristics, and the tensile curve changes from the round-house-type before aging to the Lüders-type yield curve. When the aging time was fixed as tag=5 min, with the increasing aging temperature Tag , the yield strength Rp0.2, tensile strength Rm and yield ratio Rp0.2/Rm of X90 steel all show an increasing trend, and the uniform elongation UEL, fracture strain εf, total energy absorbed by low-temperature impact Ak, crack formation energy Ai and crack growth energy Ap all show a decreasing trend. The microstructure of X90 steel before and after aging treatment presents more or less the same complex structure composed of fine acicular ferrite + polygonal ferrite + lath bainite + M-A constituents. Pre-straining and aging treatment are the main inducements of the strain aging behavior of pipes. In the pipe production process, the flexible leveling method could be used to replace the rigid roll leveling method, and the multi-step progressive molding method could be used to replace the one-step spiral molding method to effectively control the pre-strain. It is noted that the temperature of the present coating process should be lowered than 423.15 K to avoid any harmful heat effect on the performance of pipes. Otherwise, one should adopt other coating process, of which the applying temperature should meet the above requirement.

Key wordsmetallic materials    mechanical properties    X90 pipeline steel    strain aging    sensitive temperature    microstructure
收稿日期: 2021-02-06     
ZTFLH:  TG142.1  
基金资助:国家重点研发计划(2018YFC0310300);陕西铁路工程职业技术学院科学研究基金(KY2019-19);陕西铁路工程职业技术学院创新团队培育计划(KJTD202002);陕西铁路工程职业技术学院科技创新人才培育计划(KJRC202002)
作者简介: 杨军,男,1982年生,高级工程师,硕士
CSiMnPSNiCrCuNbVTiMoAlBCEPcmFe
0.050.261.950.0070.00120.210.340.220.080.030.0170.340.030.00040.21Bal.
表1  X90级管线钢的化学成分(质量分数,%)
Aging treatment process

Yield strength

Rp0.2/MPa

Tensile strength

Rm/MPa

Yield ratio

Rp0.2/Rm

Uniform elongation

UEL/%

Fracture strain

εf / %

Before aging6277370.857.320.0
373.15 K+5 min6057440.817.119.6
423.15 K+5 min6617410.896.919.7
473.15 K+5 min6767450.917.119.2
483.15 K+5 min6937210.967.320.3
493.15 K+5 min6857300.947.520.2
503.15 K+5 min6867540.916.618.4
513.15 K+5 min7057420.957.519.8
523.15 K+5 min6857540.917.119.3
表2  应变时效前后X90管线钢的拉伸性能
图1  微观试样的取样示意图
图2  应变时效处理对X90高强管线钢应力-应变曲线特征的影响
图3  应变时效温度对X90高强管线钢拉伸性能的影响
Aging treatment processTest temperature/K

Total energy

Ak/J

Crack formation energy

Ai/J

Crack growth energy

Ap/J

Before aging253.1539892306
373.15K+5min38691295
423.15K+5min37484263
473.15K+5min37083287
523.15K+5min34790257
表3  应变时效处理前后X90高强管线钢的低温冲击测试结果
图4  应变时效处理对X90高强管线钢冲击韧性的影响
图5  X90高强管线钢应变时效处理前后的夏比冲击断口形貌
图6  X90高强管线钢应变时效处理前后的微观组织
1 Bi Z Y. Key technologies research for new generation large transportation capacity oil and gas pipeline manufacturing [J]. Welded Pipe Tube, 2019, 41(7): 10
1 毕宗岳. 新一代大输量油气管材制造关键技术研究进展 [J]. 焊管, 2019, 41(7): 10
2 Bi Z Y, Yang J, Niu H, et al. Impact toughness of base metal and welded joints of X90 high-strength pipeline steel [J]. Trans. China Weld. Inst., 2018, 39(10): 35
2 毕宗岳, 杨 军, 牛 辉等. X90管线钢管埋弧焊缝组织与性能分析 [J]. 焊接学报, 2018, 39(10): 35
3 Lee S I, Lee S Y, Lee S G, et al. Effect of strain aging on tensile behavior and properties of API X60, X70 and X80 pipeline steels [J]. Met. Mater. Int., 2018, 24: 1221
4 Taheri A K, Maccagno T M, Jonas J J. Dynamic strain aging and the wire drawing of low carbon steel rods [J]. ISIJ Int., 1995, 35: 1532
5 De A K, De Blauwe K, Vandeputte S, et al. Effect of dislocation density on the low temperature aging behavior of an ultra-low carbon bake hardening steel [J]. J. Alloys Compd., 2000, 310: 405
6 Jiang Y W, Niu T, An C G, et al. Strain aging behavior of X70 pipeline steel [J]. Chin. J. Mater. Res., 2016, 30: 767
6 姜永文, 牛 涛, 安成钢等. X70管线钢的应变时效行为 [J]. 材料研究学报, 2016, 30: 767
7 Zuo X R, Li R T. Research of strain aging in pipeline steel with a ferrite/martensite dual-phase microstructure [J]. Steel Res. Int., 2015, 86: 163
8 Ji L K, Chen H Y, Zhang J M. Study on aging effect of X80 line steel pipe mechanical properties [J]. Pet. Tubular Goods Inst., 2018, 4(6): 27
8 吉玲康, 陈宏远, 张继明. 时效对X80管线钢管力学性能的影响规律研究 [J]. 石油管材与仪器, 2018, 4(6): 27
9 Khotinov V A, Polukhina O N, Selivanova O V, et al. The influence of the strain aging on the mechanical properties upon extension in the metal of X80 strength grade pipes [J]. Inorg. Mater., 2019, 10: 939
10 Wiskel J B, Ma J, Valloton J, et al. Strain aging on the yield strength to tensile strength ratio of UOE pipe [J]. Mater. Sci. Technol., 2017, 33: 1319
11 Lee S W, Im I H, Hwang B. Effect of microstructure on the strain aging properties of API X70 pipeline steels [J]. Korean J. Mater. Res., 2018, 28: 702
12 Lee S W, Lee S I, Hwang B. Effect of strain aging on the tensile properties of an API X70 pipeline steel [J]. Korean J. Mater. Res., 2017, 27: 524
13 Batalha R L, Godefroid L B, De Faria G L, et al. Strain ageing in welded joints of API5L X65Q seamless pipes [J]. Weld. Int., 2017, 31: 577
14 Sung H K, Lee D H, Lee S, et al. Effects of C and Si on strain aging of strain-based API X60 pipeline steels [J]. Met. Mater. Int., 2017, 23: 450
15 Liu Y B, Yan L F, Zhang J, et al. Study on effects of aging temperature on X90 pipeline steel [J]. Pet. Tubular Goods Inst., 2016, 2(1): 32
15 刘宇斌, 闫丽芳, 张 娟等. 时效温度对X90管线钢的影响研究 [J]. 石油管材与仪器, 2016, 2(1): 32
16 Zheng S B, Xiong X J, Li Z P, et al. Strain aging behavior of X90 pipeline steel [J]. Heat Treat. Met., 2016, 41(6): 27
16 郑生斌, 熊祥江, 李中平等. X90级管线钢应变时效行为 [J]. 金属热处理, 2016, 41(6): 27
17 Wu K, Hu Q, Yang M, et al. Influence of strain aging on microstructure and properties of X90 cold bending pipe [J]. Heat Treat. Met., 2016, 41(7): 30
17 吴 康, 胡 强, 杨 眉等. 应变时效对X90冷弯管组织与性能的影响 [J]. 金属热处理, 2016, 41(7): 30
18 Li Y H, Chi Q, Feng H, et al. Effect of strain aging on properties of X90 line pipe [J]. Eng. Failure Anal., 2020, 118: 104844
19 Bi Z Y, Yang J, Niu H, et al. Ipmact toughness of base metal and welding seams of X90 high-strength pipeline steel [J]. Trans. Mater. Heat Treat., 2017, 38(10): 72
19 毕宗岳, 杨 军, 牛 辉等. X90高强管线钢母材及焊缝的冲击韧性 [J]. 材料热处理学报, 2017, 38(10): 72
20 Niu T, Jiang Y W, Li F, et al. Effect of thermo-mechanical control processing on microstructure and properties of high toughness X90 pipeline steel [J]. Chin. J. Mater. Res., 2015, 29: 948
20 牛 涛, 姜永文, 李 飞等. TMCP工艺对高韧性X90管线钢组织性能的影响 [J]. 材料研究学报, 2015, 29: 948
21 Guo X R, Sun C Y, Wang C H, et al. Investigation of strain rate effect by three-dimensional discrete dislocation dynamics for fcc single crystal during compression process [J]. Acta Metall. Sin., 2018, 54: 1322
21 郭祥如, 孙朝阳, 王春晖等. 基于三维离散位错动力学的fcc结构单晶压缩应变率效应研究 [J]. 金属学报, 2018, 54: 1322
22 Gray III G T. High-strain-rate deformation: mechanical behavior and deformation substructures induced [J]. Annu. Rev. Mater. Res., 2012, 42: 285
23 Tang C J, Shang C J, Guan H L, et al. Strain hardening behavior and stress ratio of high deformability pipeline steel with ferrite/bainite multi-phase microstructure [J]. Chin. J. Mater. Res., 2016, 30: 409
23 汤忖江, 尚成嘉, 关海龙等. 大变形管线钢中F/B多相组织应变硬化行为和应力比研究 [J]. 材料研究学报, 2016, 30: 409
24 Duan L N, Chen Y, Liu Q Y, et al. Effect of thermo-mechanical control process on microstructure of high strength X100 pipeline steel [J]. Chin. J. Mater. Res., 2014, 28: 51
24 段琳娜, 陈 宇, 刘清友等. 控轧控冷工艺对高强度X100管线钢组织的影响 [J]. 材料研究学报, 2014, 28: 51
25 Nie W J, Shang C J, Guan H L, et al. Control of microstructures of ferrite/bainite (F/B) dual-phase steel and analysis of their resistance to deformation behavior [J]. Acta Metall. Sin., 2012, 48: 298
25 聂文金, 尚成嘉, 关海龙等. 铁素体/贝氏体(F/B)双相钢组织调控及其抗变形行为分析 [J]. 金属学报, 2012, 48: 298
26 Kumar A, Singh S B, Ray K K. Influence of bainite/martensite-content on the tensile properties of low carbon dual-phase steels [J]. Mater. Sci. Eng., 2008, 474A: 270
27 Naamane S, Monnet G, Devincre B. Low temperature deformation in iron studied with dislocation dynamics simulations [J]. Int. J. Plast., 2010, 26: 84
28 Gao Y J, Quan S L, Deng Q Q, et al. Phase-field-crystal simulation of edge dislocation climbing and gliding under shear strain [J]. Acta Phys. Sin., 2015, 64: 190
28 高英俊, 全四龙, 邓芊芊等. 剪切应变下刃型位错的滑移机理的晶体相场模拟 [J]. 物理学报, 2015, 64: 190
29 Ma M T, Wu B R. Dual Phase Steel Physical and Mechanical Metallurgy2nd ed. [M]. Beijing: Metallurgical Industry Press, 2009: 286
29 马鸣图, 吴宝榕. 双相钢-物理和力学冶金. 2版 [M]. 北京: 冶金工业出版社, 2009: 286
[1] 毛建军, 富童, 潘虎成, 滕常青, 张伟, 谢东升, 吴璐. AlNbMoZrB系难熔高熵合金的Kr离子辐照损伤行为[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] 赵政翔, 廖露海, 徐芳泓, 张威, 李静媛. 超级奥氏体不锈钢24Cr-22Ni-7Mo-0.4N的热变形行为及其组织演变[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] 幸定琴, 涂坚, 罗森, 周志明. C含量对VCoNi中熵合金微观组织和性能的影响[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] 欧阳康昕, 周达, 杨宇帆, 张磊. LPSOMg-Y-Er-Ni合金的组织和拉伸性能[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] 潘新元, 蒋津, 任云飞, 刘莉, 李景辉, 张明亚. 热挤压钛/钢复合管的微观组织和性能[J]. 材料研究学报, 2023, 37(9): 713-720.
[8] 徐利君, 郑策, 冯小辉, 黄秋燕, 李应举, 杨院生. 定向再结晶对热轧态Cu71Al18Mn11合金的组织和超弹性性能的影响[J]. 材料研究学报, 2023, 37(8): 571-580.
[9] 熊诗琪, 刘恩泽, 谭政, 宁礼奎, 佟健, 郑志, 李海英. 固溶处理对一种低偏析高温合金组织的影响[J]. 材料研究学报, 2023, 37(8): 603-613.
[10] 刘继浩, 迟宏宵, 武会宾, 马党参, 周健, 徐辉霞. 喷射成形M3高速钢热处理过程中组织的演变和硬度偏低问题[J]. 材料研究学报, 2023, 37(8): 625-632.
[11] 陈晶晶, 占慧敏, 吴昊, 朱乔粼, 周丹, 李柯. 纳米晶CoNiCrFeMn高熵合金的拉伸力学性能[J]. 材料研究学报, 2023, 37(8): 614-624.
[12] 由宝栋, 朱明伟, 杨鹏举, 何杰. 合金相分离制备多孔金属材料的研究进展[J]. 材料研究学报, 2023, 37(8): 561-570.
[13] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[14] 王昊, 崔君军, 赵明久. 镍基高温合金GH3536带箔材的再结晶与晶粒长大行为[J]. 材料研究学报, 2023, 37(7): 535-542.
[15] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.