Please wait a minute...
材料研究学报  2021, Vol. 35 Issue (10): 778-784    DOI: 10.11901/1005.3093.2020.287
  研究论文 本期目录 | 过刊浏览 |
FLiNaK熔盐浸渗对2D C/C复合材料力学性能的影响
白龙腾1,2(), 成来飞2, 杨晓辉1,2
1.西北工业大学 西安 710072
2.西安航天动力研究所 西安 710010
Influence of FLiNaK Salt Impregnation on Mechanical Properties of 2D Woven C/C Composite
BAI Longteng1,2(), CHENG Laifei2, YANG Xiaohui1,2
1.Northwestern Polytechnical University, Xi'an 710072, China
2.Xi'an Aerospace Propulsion Institute, Xi'an 710010, China
引用本文:

白龙腾, 成来飞, 杨晓辉. FLiNaK熔盐浸渗对2D C/C复合材料力学性能的影响[J]. 材料研究学报, 2021, 35(10): 778-784.
Longteng BAI, Laifei CHENG, Xiaohui YANG. Influence of FLiNaK Salt Impregnation on Mechanical Properties of 2D Woven C/C Composite[J]. Chinese Journal of Materials Research, 2021, 35(10): 778-784.

全文: PDF(3749 KB)   HTML
摘要: 

在650℃不同压力下将熔融的LiF-NaF-KF盐(46.5%-11.5%-42.0%,摩尔分数,FLiNaK)浸渗入2D C/C复合材料中,测试2D C/C复合材料的增重率、密度和力学性能的变化并用X射线断层扫描(X-ray CT)和扫描电子显微镜(SEM)观察FLiNaK熔盐的分布,研究了FLiNaK熔盐浸渗对2D C/C复合材料力学性能的影响。结果表明,FLiNaK熔盐分布在2D C/C复合材料开放的孔隙中、纤维束中和相邻层的裂缝中;随着浸渗压力的提高2D C/C复合材料的增重率增大、压缩强度和弯曲强度提高。FLiNaK熔盐浸渗产生的“二次增密”作用和2D C/C复合材料中残余应力的耦合效应,使其力学性能提高。

关键词 复合材料力学性能熔盐浸渗X射线CT    
Abstract

Impregnating molten LiF-NaF-KF salt (46.5%-11.5%-42.0%,mole fraction, FLiNaK) into a 2D woven C/C composite was performed at 650℃ under different pressure. The mass gain, the change of density and mechanical properties of the 2D woven C/C composite after FLiNaK salt impregnation were measured. The FLiNaK salt distribution in the 2D woven C/C composite was observed by X-ray CT and SEM. The results show that the mass gain of the 2D woven C/C composite increased with the increasing impregnation pressure. FLiNaK salt distributed within open pores of the composite and fissures of fiber bundles and interlaminar fractures. The compressive strength and flexural strength of the 2D woven C/C composite increased with the increasing impregnation pressure. The coupling effect of densification induced by FLiNaK salt impregnation and residual stress formed in 2D woven C/C composite could be benefitial to the mechanical property of the C/C composite.

Key wordscomposite    mechanical property    molten salt    impregnation    X-ray CT
收稿日期: 2020-07-14     
ZTFLH:  TB332  
基金资助:国家自然科学基金(51632007)
作者简介: 白龙腾,男,1984年生,硕士
图1  2D C/C复合材料的孔隙分布
图2  2D C/C复合材料的熔盐浸渗量与浸渗压力的关系、进汞量与浸渗压力的关系以及密度与浸渗压力的关系
γ/N·m-1θ/(°)Pressure/MPaDiameter/μm
0.201350.22.83
0.41.41
0.60.94
表1  浸渗压力与浸渗孔径的关系
图3  FLiNaK熔盐浸渗后材料的压缩强度和弯曲强度的变化
图4  2D C/C复合材料在浸渗前、在0.2 MPa FliNaK、0.4 MPa FliNaK和0.6 MPa FliNaK中浸渗后的二维切片和三维重构图像
图5  2D C/C复合材料在浸渗前和不同压力下浸渗后的断口形貌
1 Hayner G O. NGNP Conceptual design study: composites R&D technical issues [R]. INL/EXT-09-16542, 2008
2 Eto M, Konishi T, Shibata T, et al. Research and developments on application of carbon-carbon composite to HTGR/VHTR in Japan [J]. IOP Conf. Ser., 2011, 18: 162003
3 Tsai S C, Jen H Y, Kai J J, et al. Microstructural evolutions of three-dimensional carbon-carbon composite materials irradiated by carbon ions at elevated temperatures [J]. Prog. Nucl. Energy, 2012, 57: 32
4 Baccahlini G, Ball S, Burchell T D, et al. Survey of materials research and development needs to support early deployment [R]. INEEL/EXT-03-00141, 2003: 5
5 Cho M S, Lee Y W, Jeong K C, et al. HTGR fuel compact fabrication technology [R]. Oak Ridge National Laboratory, 2006
6 Burchell T D, Strizak J P. Technical plan: development of carbon-carbon composite matearials for high-temperature NP-MHTGR control rods [R]. ORNL/NPR-92/6, 1992
7 A technology roadmap for generation IV nuclear energy systems [R]. GIF-002-00, 2002: 33
8 Abram T, Ion S. Generation-IV nuclear power: A review of the state of the science [J]. Energy Policy, 2008, 36: 4323
9 Song J L, Zhao Y L, Zhang J P, et al. Preparation of binderless nanopore-isotropic graphite for inhibiting the liquid fluoride salt and Xe135 penetration for molten salt nuclear reactor [J]. Carbon, 2014, 79: 36
10 He Z T, Gao L N, Qi W, et al. Molten FLiNaK salt infiltration into degassed nuclear graphite under inert gas pressure [J]. Carbon, 2015, 84: 511
11 Briggs R B. Molten-salt reactor program: semiannual Progress Report for Period Ending July 31, 1964 [R]. Oak Ridge, Tennessee, 1964
12 Sundaresan S. CFD modeling of compact offset strip-fin high temperature heat exchanger [D]. Reno: University of Nevada, 2005
13 Nam H O, Bengtson A, Vörtler K, et al. First-principles molecular dynamics modeling of the molten fluoride salt with Cr solute [J]. J. Nucl. Mater., 2014, 449: 148
14 Olson L C. Materials corrosion in molten LiF-NaF-KF eutectic salt [D]. Madison: University of Wisconsin-Madison, 2009
15 Camus G, Guillaumat L, Baste S. Development of damage in a 2D woven C/SiC composite under mechanical loading: I. Mechanical characterization [J]. Compos. Sci. Technol., 1996, 56: 1363
16 Bobet J L, Lamon J. Study of thermal residual stresses in ceramic matrix composites [J]. J. Alloy Compd., 1997, 259: 260
17 Dassios K G, Aggelis D G, Kordatos E Z, et al. Cyclic loading of a SiC-fiber reinforced ceramic matrix composite reveals damage mechanisms and thermal residual stress state [J]. Composites, 2013, 44A: 105
18 Hui M. Measurement and calculation of thermal residual stress in fiber reinforced ceramic matrix composites [J]. Compos. Sci. Technol., 2008, 48: 3285
[1] 毛建军, 富童, 潘虎成, 滕常青, 张伟, 谢东升, 吴璐. AlNbMoZrB系难熔高熵合金的Kr离子辐照损伤行为[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] 幸定琴, 涂坚, 罗森, 周志明. C含量对VCoNi中熵合金微观组织和性能的影响[J]. 材料研究学报, 2023, 37(9): 685-696.
[3] 潘新元, 蒋津, 任云飞, 刘莉, 李景辉, 张明亚. 热挤压钛/钢复合管的微观组织和性能[J]. 材料研究学报, 2023, 37(9): 713-720.
[4] 陈晶晶, 占慧敏, 吴昊, 朱乔粼, 周丹, 李柯. 纳米晶CoNiCrFeMn高熵合金的拉伸力学性能[J]. 材料研究学报, 2023, 37(8): 614-624.
[5] 刘瑞峰, 仙运昌, 赵瑞, 周印梅, 王文先. 钛合金/不锈钢复合板的放电等离子烧结技术制备及其性能[J]. 材料研究学报, 2023, 37(8): 581-589.
[6] 季雨辰, 刘树和, 张天宇, 查成. MXene在锂硫电池中应用的研究进展[J]. 材料研究学报, 2023, 37(7): 481-494.
[7] 秦鹤勇, 李振团, 赵光普, 张文云, 张晓敏. 固溶温度对GH4742合金力学性能及γ' 相的影响[J]. 材料研究学报, 2023, 37(7): 502-510.
[8] 冯叶, 陈志勇, 姜肃猛, 宫骏, 单以银, 刘建荣, 王清江. 一种NiCrAlSiY涂层对Ti65钛合金板材循环氧化和室温力学性能的影响[J]. 材料研究学报, 2023, 37(7): 523-534.
[9] 王伟, 解泽磊, 屈怡珅, 常文娟, 彭怡晴, 金杰, 王快社. Graphene/SiO2 纳米复合材料作为水基润滑添加剂的摩擦学性能[J]. 材料研究学报, 2023, 37(7): 543-553.
[10] 史畅, 杜宇航, 赖利民, 肖思明, 郭宁, 郭胜锋. CrTaTi难熔中熵合金的力学性能和抗氧化性能[J]. 材料研究学报, 2023, 37(6): 443-452.
[11] 雷志国, 文胜平, 黄晖, 张二庆, 熊湘沅, 聂祚仁. 冷轧变形和添加SiAl-2Mg-0.8Cu(-Si)合金的组织和力学性能的影响[J]. 材料研究学报, 2023, 37(6): 463-471.
[12] 张藤心, 王函, 郝亚斌, 张建岗, 孙新阳, 曾尤. 基于界面氢键结构的石墨烯/聚合物复合材料的阻尼性能[J]. 材料研究学报, 2023, 37(6): 401-407.
[13] 邵萌萌, 陈招科, 熊翔, 曾毅, 王铎, 王徐辉. C/C-ZrC-SiC复合材料的Si2+ 离子辐照行为[J]. 材料研究学报, 2023, 37(6): 472-480.
[14] 姜水淼, 明开胜, 郑士建. 晶界偏析以及界面相和纳米晶材料力学性能的调控[J]. 材料研究学报, 2023, 37(5): 321-331.
[15] 陈志鹏, 朱智浩, 宋梦凡, 张爽, 刘田雨, 董闯. 基于Ti-6Al-4V团簇式设计的超高强Ti-Al-V-Mo-Nb-Zr合金[J]. 材料研究学报, 2023, 37(4): 308-314.