Please wait a minute...
材料研究学报  2020, Vol. 34 Issue (7): 481-488    DOI: 10.11901/1005.3093.2020.034
  研究论文 本期目录 | 过刊浏览 |
低浓度全尾砂充填材料泌水及其调控机理
周在波1, 刘娟红1,2,3(), 吴瑞东1(), 吴爱祥1,3, 王洪江1,3, 王少勇1,3
1.北京科技大学 土木与资源工程学院 北京 100083
2.北京科技大学 城市地下空间工程北京市重点实验室 北京 100083
3.北京科技大学 金属矿山高效开采与安全教育部重点实验室 北京 100083
Analysis of Bleeding of Low Concentration Full Tailings Filling Material and Its Regulate-control
ZHOU Zaibo1, LIU Juanhong1,2,3(), WU Ruidong1(), WU Aixiang1,3, WANG Hongjiang1,3, WANG Shaoyong1,3
1.College of Civil and Resource Engineering, University of Science and Technology Beijing, Beijing 100083, China
2.Beijing Key Laboratory of Urban Underground Space Engineering, University of Science and Technology Beijing, Beijing 100083, China
3.State Key Laboratory of High-efficient Mining and Safety of Metal Mines, Ministry of Education, University of Science and Technology Beijing, Beijing 100083, China
引用本文:

周在波, 刘娟红, 吴瑞东, 吴爱祥, 王洪江, 王少勇. 低浓度全尾砂充填材料泌水及其调控机理[J]. 材料研究学报, 2020, 34(7): 481-488.
Zaibo ZHOU, Juanhong LIU, Ruidong WU, Aixiang WU, Hongjiang WANG, Shaoyong WANG. Analysis of Bleeding of Low Concentration Full Tailings Filling Material and Its Regulate-control[J]. Chinese Journal of Materials Research, 2020, 34(7): 481-488.

全文: PDF(8533 KB)   HTML
摘要: 

针对低浓度全尾砂充填过程中的泌水造成输送堵管充填体强度不均匀和体积沉缩等问题,进行尾砂级配、胶凝材料用量、料浆浓度、固水材料掺量的正交实验,分析了各种因素对泌水率的影响,根据电阻率(ER)测试、SEM-EDS和XRD探讨了固水材料的作用机理。结果表明,充填料浆的泌水率随着尾砂细颗粒、胶砂比、浓度和固水材料掺量的增加而降低,料浆的浓度和固水材料掺量对泌水率的影响最显著。添加5%的固水材料可使充填材料泌水率降低10%,初始粘度降低30%,2 h粘度降低53%,28 d抗压强度提高20%。固水材料可改善充填材料的孔隙率,提高充填材料水化体系的SO42-浓度和pH值,生成钙矾石、斜方钙沸石以及C-S-H凝胶和硅铝酸盐凝胶的混合物,消耗大量自由水,高分子聚合物通过分子缠绕提高了体系的稳定性,改善了充填材料的泌水现象。

关键词 复合材料固水材料正交实验泌水率微观机理    
Abstract

It is known that the bleeding phenomenon during the paste filling of the low concentration full tailings may result in the blocking of pipes, afterwards, the inhomogeneous distribution of strength and volume shrinkage of the filling body. For solving the above problems, orthogonal tests were designed for revealing the effect of tailing gradation, amount of binding material, slurry concentration and content of anti-bleeding material on bleeding rate by means of electrical resistivity test (ER), SEM-EDS and XRD. The results show that the bleeding rate of filling materials is inversely proportional to the tailing gradation, amount of binding material, slurry concentration and the content of anti-bleeding material. The concentration of slurry and the content of water solidifier had a great influence on the bleeding rate. By adding 5% anti-bleeding material equivalent to the total amount of glue-powder, the initial viscosity reduced by 30%, the 2 h viscosity reduced by 53%, the bleeding rate can be reduced by 10% and the 28 d compressive strength increased by 20% for the filling body. The anti-bleeding material improves the porosity of the, increases the concentration of SO42- and pH value of the hydration system of the filling body, as well as generates ettringite, trapezium, C-S-H gel and silicoaluminate gel, which consumed a lot of free water, improves system stability by entangling molecules so that improves the bleeding situation for the filling body.

Key wordscomposite    anti-bleeding material    orthogonal tests    bleeding rate    microscopic mechanism
收稿日期: 2020-01-28     
ZTFLH:  TG142  
基金资助:国家自然科学基金(51834001)
作者简介: 周在波,男,1992年生,博士
Na2OMgOAl2O3SiO2P2O5SO3K2OCaOTiO2MnOFe2O3ZnO
Tailings0.88.56.145.10.23.60.818.30.40.215.30.1
Glue-powder1.54.314.438.10.81.10.426.10.4-2.6-
表1  不同材料氧化物分析(质量分数, %)
图1  试验材料的尾砂粒径分析和胶固粉的矿物分析
Serial numberTailings gradationSand and binder ratioConcentration/%The amount of anti-bleeding material/%Bleeding rate/%
M11(2:3)1(1:5)1(67)1(5)20.5
M212(1:6)2(70)2(7)12.2
M313(1:7)3(73)3(9)7.5
M42(5:5)1238.5
M5223110.2
M6231217.4
M73(3:2)1328.2
M8321310.5
M9332115.4
K113.411.416.115.4
K21211.91212.6
K311.413.48.68.8
R122.57.56.5
表2  L9(34)泌水率正交实验结果
图2  泌水率正交实验结果分析
图3  固水材料对充填材料流变性能、抗压强度和泌水率的影响
图4  充填材料在管道输送过程示意图(1)泌水示意图,(2)固水材料作用原理
图5  M0G0与M0G1试验组不同龄期的电阻率
图6  固水材料添加前后不同龄期的SEM微观分析
图7  添加固水材料后水化28 d不同点位的能谱分析
图8  水化产物的对比分析
[1] Hou C, Zhu W C, Yan B X, et al. Influence of binder content on temperature and internal strain evolution of early age cemented tailings backfill [J]. Constr. Build. Mater., 2018, 189: 585
doi: 10.1016/j.conbuildmat.2018.09.032
[2] Sun W, Wang H J, Hou K P. Control of waste rock-tailings paste backfill for active mining subsidence areas [J]. J. Clean. Prod., 2018, 171: 567
doi: 10.1016/j.jclepro.2017.09.253
[3] Fall M, Célestin J C, Pokharel M, et al. A contribution to understanding the effects of curing temperature on the mechanical properties of mine cemented tailings backfill [J]. Eng. Geol., 2010, 114: 397
doi: 10.1016/j.enggeo.2010.05.016
[4] Wang Y T, Yang Z Q, Li M H, et al. Preparation of new backfill cementitious materials with unclassified tailings-rod milling sands [J]. Chin. J. Mater. Res., 2015, 29: 291
[4] (王有团, 杨志强, 李茂辉等. 全尾砂-棒磨砂新型胶凝充填材料的制备 [J]. 材料研究学报, 2015, 29: 291)
[5] Liu J H, Wu R D, Wu A X, et al. Bleeding characteristics and improving mechanism of self-flowing tailings filling slurry with low concentration [J]. Minerals, 2017, 7: 131
doi: 10.3390/min7080131
[6] Cai J W, Feng X X, Zhao L, et al. Bleeding behavior of concrete prepared with ferrous mill tailings as manufactured fine aggregates [J]. J. Wuhan Univ. Technol., 2009, 31(7): 88
[6] (蔡基伟, 封孝信, 赵丽等. 铁尾矿砂混凝土的泌水特性 [J]. 武汉理工大学学报, 2009, 31(7): 88)
[7] Topçu İ B, Elgün V B. Influence of concrete properties on bleeding and evaporation [J]. Cement Concrete Res., 2004, 34: 275
doi: 10.1016/j.cemconres.2003.07.004
[8] Gökçe H S, Andiç-Çakır Ö. Bleeding characteristics of high consistency heavyweight concrete mixtures [J]. Constr. Build. Mater., 2019, 194: 153
doi: 10.1016/j.conbuildmat.2018.11.029
[9] Kim J H, Yim H J, Kwon S H. Quantitative measurement of the external and internal bleeding of conventional concrete and SCC [J]. Cement Concrete Comp., 2014, 54: 34
doi: 10.1016/j.cemconcomp.2014.05.006
[10] Dong H, Qian C X. Influence of aggregate size on micro-bleeding and microstructure of interfacial transition zone [J]. J. Build. Mater., 2008, 33: 334
[10] (董华, 钱春香. 骨料尺寸对微区泌水及界面区结构特征的影响 [J]. 建筑材料学报, 2008, 33: 334)
[11] Han S, Yan P Y, An M Z. Influence of alkali sulfate and superplasticizers on bleeding resistance of cement paste [J]. J. Chin. Ceram. Soc., 2016, 44: 1614
[11] (韩松, 阎培渝, 安明喆. 碱金属硫酸盐与减水剂对水泥浆体抗泌水能力的影响 [J]. 硅酸盐学报, 2016, 44: 1614)
[12] Zhang C F, Guan X M, Zhang H B, et al. Mechano-chemical modified Calcium bentonite improves stability of grouting materials [J]. Mater. Rep., 2019, 33: 3408
[12] (张超凡, 管学茂, 张海波等. 机械力化学改性钙基膨润土提高注浆材料的稳定性 [J]. 材料导报, 2019, 33: 3408)
[13] Wang H J, Li H, Wu A X, et al. New paste definition based on grading of full taillings [J]. J. Cent. South Univ. (Sci. Technol.), 2014, 45: 557
[13] (王洪江, 李辉, 吴爱祥等. 基于全尾砂级配的膏体新定义 [J]. 中南大学学报(自然科学版), 2014, 45: 557)
[14] Li H, Wu A X, Han B, et al. Effect of a new type of binder on the strength of cemented backfill [J]. Met. Mine, 2016, (1): 8
[14] (李红, 吴爱祥, 韩斌等. 新型胶凝材料对充填体强度的影响 [J]. 金属矿山, 2016, (1): 8)
[15] Deng X J, Klein B, Tong L B, et al. Experimental study on the rheological behavior of ultra-fine cemented backfill [J]. Constr. Build. Mater., 2018, 158: 985
doi: 10.1016/j.conbuildmat.2017.05.085
[16] Ouattara D, Mbonimpa M, Yahia A, et al. Assessment of rheological parameters of high density cemented paste backfill mixtures incorporating superplasticizers [J]. Constr. Build. Mater., 2018, 190: 294
doi: 10.1016/j.conbuildmat.2018.09.066
[17] Zhang X, Liu H, Zhang H, et al. Optimization of air-entrained effect of polycarboxylate superplasticizer [J]. J. Build. Mater., 2019, 22: 957
[17] (张雄, 刘恒, 张恒等. 聚羧酸减水剂引气效应复配优化研究 [J]. 建筑材料学报, 2019, 22: 957)
[18] Wang X, Cui S P, Yan B L, et al. Influence of Cr ions with different valence on the formation and structure of ettringite [J]. J. Build. Mater., 2018, 21: 542
[18] (王昕, 崔素萍, 颜碧兰等. 不同价态Cr离子对钙矾石形成与结构的影响 [J]. 建筑材料学报, 2018, 21: 542)
[1] 潘新元, 蒋津, 任云飞, 刘莉, 李景辉, 张明亚. 热挤压钛/钢复合管的微观组织和性能[J]. 材料研究学报, 2023, 37(9): 713-720.
[2] 刘瑞峰, 仙运昌, 赵瑞, 周印梅, 王文先. 钛合金/不锈钢复合板的放电等离子烧结技术制备及其性能[J]. 材料研究学报, 2023, 37(8): 581-589.
[3] 季雨辰, 刘树和, 张天宇, 查成. MXene在锂硫电池中应用的研究进展[J]. 材料研究学报, 2023, 37(7): 481-494.
[4] 王伟, 解泽磊, 屈怡珅, 常文娟, 彭怡晴, 金杰, 王快社. Graphene/SiO2 纳米复合材料作为水基润滑添加剂的摩擦学性能[J]. 材料研究学报, 2023, 37(7): 543-553.
[5] 张藤心, 王函, 郝亚斌, 张建岗, 孙新阳, 曾尤. 基于界面氢键结构的石墨烯/聚合物复合材料的阻尼性能[J]. 材料研究学报, 2023, 37(6): 401-407.
[6] 邵萌萌, 陈招科, 熊翔, 曾毅, 王铎, 王徐辉. C/C-ZrC-SiC复合材料的Si2+ 离子辐照行为[J]. 材料研究学报, 2023, 37(6): 472-480.
[7] 张锦中, 刘晓云, 杨健茂, 周剑锋, 查刘生. 温度响应性双面纳米纤维的制备和性能[J]. 材料研究学报, 2023, 37(4): 248-256.
[8] 王刚, 杜雷雷, 缪自强, 钱凯成, 杜向博文, 邓泽婷, 李仁宏. 聚多巴胺改性碳纤维增强尼龙6复合材料的界面性能[J]. 材料研究学报, 2023, 37(3): 203-210.
[9] 林师峰, 徐东安, 庄艳歆, 张海峰, 朱正旺. TiZr基非晶/TC21双层复合材料的制备和力学性能[J]. 材料研究学报, 2023, 37(3): 193-202.
[10] 苗琪, 左孝青, 周芸, 王应武, 郭路, 王坦, 黄蓓. 304不锈钢纤维/ZL104铝合金复合泡沫的孔结构、力学、吸声性能及其机理[J]. 材料研究学报, 2023, 37(3): 175-183.
[11] 张开银, 王秋玲, 向军. FeCo/SnO2 复合纳米纤维的制备及其吸波性能[J]. 材料研究学报, 2023, 37(2): 102-110.
[12] 周聪, 昝宇宁, 王东, 王全兆, 肖伯律, 马宗义. (Al11La3+Al2O3)/Al复合材料的高温性能及其强化机制[J]. 材料研究学报, 2023, 37(2): 81-88.
[13] 罗昱, 陈秋云, 薛丽红, 张五星, 严有为. 钠离子电池双层碳包覆Na3V2(PO4)3 正极材料的超声辅助溶液燃烧合成及其电化学性能[J]. 材料研究学报, 2023, 37(2): 129-135.
[14] 刘志华, 岳远超, 丘一帆, 卜湘, 阳涛. g-C3N4/Ag/BiOBr复合材料的制备及其光催化还原硝酸盐氮[J]. 材料研究学报, 2023, 37(10): 781-790.
[15] 谢东航, 潘冉, 朱士泽, 王东, 刘振宇, 昝宇宁, 肖伯律, 马宗义. 增强颗粒尺寸对B4C/Al-Zn-Mg-Cu复合材料微观组织及力学性能的影响[J]. 材料研究学报, 2023, 37(10): 731-738.