Please wait a minute...
材料研究学报  2020, Vol. 34 Issue (7): 489-494    DOI: 10.11901/1005.3093.2019.577
  研究论文 本期目录 | 过刊浏览 |
新型大孔径TiO2纳米碗状阵列的制备及其机制
于泽鑫, 桑丽霞()
北京工业大学 传热强化与过程节能教育部重点实验室 传热与能源利用北京市重点实验室 北京 100124
Preparation and Formation Mechanism of a Novel TiO2 Nano Bowl Array with Large Hole Diameter
YU Zexin, SANG Lixia()
Key Laboratory of Enhanced Heat Transfer and Energy Conservation, Ministry of Education and Key Laboratory of Heat Transfer and Energy Conversion, Beijing Municipality, Beijing University of Technology, Beijing, 100124, China
引用本文:

于泽鑫, 桑丽霞. 新型大孔径TiO2纳米碗状阵列的制备及其机制[J]. 材料研究学报, 2020, 34(7): 489-494.
Zexin YU, Lixia SANG. Preparation and Formation Mechanism of a Novel TiO2 Nano Bowl Array with Large Hole Diameter[J]. Chinese Journal of Materials Research, 2020, 34(7): 489-494.

全文: PDF(5689 KB)   HTML
摘要: 

用两步阳极氧化法简便快捷地制备出低成本TiO2纳米碗阵列。固定阳极氧化电压、实验温度和电解液浓度等因素、改变第二次阳极氧化时间并结合扫描电镜等测试手段考察阵列碗状结构的形成过程,从阵列的形成机制研究了TiO2纳米碗内TiO2阻挡层的纵向生长、电解液的溶解、纵向腐蚀及横向扩展之间关系的变化。结果表明,当纵向生长与纵向溶解、纵向腐蚀与横向扩展达到平衡时,TiO2碗内纳米孔消失,孔径与碗口直径相同。当第二次阳极氧化时间为110 s时,合成出133 nm的TiO2纳米碗状阵列。

关键词 材料表面与界面TiO2纳米碗两步阳极氧化法TiO2纳米孔腐蚀TiO2阻挡层    
Abstract

In order to simplify the complex process of preparing TiO2 nano bowl array by traditional method, the basic principle of two-step anodizing method was adopted. Namely, during the first and second anodizing process, oxidation voltage and electrolyte concentration all keep as before, but varying the anodizing time. The first anodizing time is 1 hour, and the second anodizing time changes from 0 s to 140 s. After the first anodizing, as the initial oxide layer for the second anodization, the residual bowl like pits on the surface of Ti-sheet may undergo three stages of growth. Firstly, the TiO2 barrier began to grow longitudinally at the bottom of the pit. Then the dissolution of the electrolyte at the edge of the bowl took effect, and nano pores appeared in the bowl. Secondly, the longitudinal growth rate of the barrier layer and the dissolution rate of the electrolyte reached a relative balance. The bottom center of the TiO2 barrier layer was first corroded, then the corrosion position changed around the bowl edge, and other nanopores were corroded laterally. Thirdly, the relationship between the longitudinal corrosion rate and the transverse corrosion rate was constantly changing, which showed that the depth of the nanopore in the bowl increased all the time, but the diameter of the bowl and the pore first increased and then decreased. Under the condition of the growth rate of TiO2 barrier layer was in relative equilibrium with the chemical dissolution rate of electrolyte, and the longitudinal corrosion rate was relatively consistent with the transverse corrosion rate, TiO2 nano bowl array with large pore diameter was synthesized. The optimal second anodizing time was 110 s, and the diameter of bowl was 133 nm.

Key wordssurface and interface of materials    TiO2 nano bowl    two-step anodizing method    TiO2 nanopore    corrosion    TiO2 barrier layer
收稿日期: 2019-12-10     
ZTFLH:  TB383  
基金资助:国家自然科学基金(51776009)
作者简介: 于泽鑫,女,1994年生,博士生
图1  TiO2纳米碗阵列在第二次阳极氧化制备过程中的时间-电流曲线和第二次阳极氧化过程的示意图
图2  第二次阳极氧化时间为10 s和20 s时TiO2切片表面的SEM照片
图3  第二次阳极氧化时间为40 s和60 s时TiO2切片表面的SEM照片
图4  第二次阳极氧化时间为80 s和 90 s时TiO2切片表面的SEM照片
图5  第二次阳极氧化时间为100、110和130 s时TiO2切片表面的SEM照片
[1] Kim D, Jeong S, Moon J. Synthesis of silver nanoparticles using the polyol process and the influence of precursor injection [J]. Nanotechnology, 2006, 17(16): 4019
doi: 10.1088/0957-4484/17/16/004 pmid: 21727531
[2] Ni X, Sang L, Zhang H, et al. Femtosecond laser deposition of TiO2 nanoparticle-assembled films with embedded CdS nanoparticles [J]. Optoelectronics Letters, 2014, 10(1): 43
doi: 10.1007/s11801-014-3196-6
[3] Macák J M, Tsuchiya H, Ghicov A, et al. Dye-sensitized anodic TiO2 nanotubes [J]. Electrochem. Commun., 2005, 7(11): 1133
doi: 10.1016/j.elecom.2005.08.013
[4] Kim H S, Lee J W, Yantara N, et al. High efficiency solid-state sensitized solar cell-based on submicrometer rutile TiO2 nanorod and CH3NH3PbI3 perovskite sensitizer [J]. Nano Lett., 2013, 13(6): 2412
pmid: 23672481
[5] Montaño-Priede J L, Peña-Rodríguez O, Pal U. Near-electric-field tuned plasmonic Au@ SiO2 and Ag@ SiO2 nanoparticles for efficient utilization in luminescence enhancement and surface-enhanced spectroscopy [J]. J. Phys. Chem. C, 2017, 121(41): 23062
doi: 10.1021/acs.jpcc.7b07395
[6] Li L, Dong J, Qian W P. Research in the Preparation and Application of Nanobowl Arrays [J]. Prog. Chem., 2018, 30: 156
[6] (李里, 董健, 钱卫平. 纳米碗阵列的制备与应用研究 [J]. 化学进展, 2018, 30: 156)
[7] Wang X, Long R, Liu D, et al. Enhanced full-spectrum water splitting by confining plasmonic Au nanoparticles in N-doped TiO2 bowl nanoarrays [J]. Nano Energy, 2016, 24: 87
doi: 10.1016/j.nanoen.2016.04.013
[8] Meng F, Shen L, Wang Y, et al. An organic-inorganic hybrid UV photodetector based on a TiO2 nanobowl array with high spectrum selectivity [J]. RSC Adv., 2013, 3(44): 21413
[9] Li X, Peng J, Kang J H, et al. One step route to the fabrication of arrays of TiO2 nanobowls via a complementary block copolymer templating and sol-gel process [J]. Soft Matter, 2008, 4(3): 515
[10] Wang D, Yu B, Wang C, et al. A novel protocol toward perfect alignment of anodized TiO2 nanotubes [J]. Adv. Mater., 2009, 21(19): 1964
[11] Umh H N, Yu S, Kim Y H, et al. Tuning the structural color of a 2D photonic crystal using a bowl-like nanostructure [J]. ACS Appl. Mater. Interfaces, 2016, 8(24): 15802
doi: 10.1021/acsami.6b03717 pmid: 27245939
[12] Wang Y G, Zhou B. Experimental factors on preparation of ordered TiO2 Nanotubes by anodic oxidation [J]. J. Shenyang. U: Nat. Sci. Ed, 2017, 29(4): 265
[12] (王英刚, 周博. 阳极氧化法制备有序TiO2纳米管的实验因素 [J]. 沈阳大学学报: 自然科学版, 2017, 29(4): 265)
[13] Zhao Y B, Sang L X. TiO2 nanoring/nanotube hierarchical structure growth mechanism and optical absorption property [J]. J. Inorg. Mater., 2017, 32(12): 1327
[13] (赵阳博, 桑丽霞. TiO2 纳米环/纳米管分层结构的生长机理及其吸光特性 [J]. 无机材料学报, 2017, 32(12): 1327)
doi: 10.15541/jim20170061
[14] Wang Y. Controllable Synthesis of TiO2 Nanotube Arrays and their Gas Sensing Properties [M]. Anhui: Hefei University of Technology Press, 2014, 12
[14] (王岩. TiO2纳米管阵列的可控制备及气敏性能研究 [M]. 合肥: 合肥工业大学出版社, 2014, 12)
[1] 陆益敏, 马丽芳, 王海, 奚琳, 徐曼曼, 杨春来. 脉冲激光沉积技术生长铜材碳基保护膜[J]. 材料研究学报, 2023, 37(9): 706-712.
[2] 王乾, 蒲磊, 贾彩霞, 李志歆, 李俊. 碳纤维/环氧复合材料界面改性的不均匀性[J]. 材料研究学报, 2023, 37(9): 668-674.
[3] 冯叶, 陈志勇, 姜肃猛, 宫骏, 单以银, 刘建荣, 王清江. 一种NiCrAlSiY涂层对Ti65钛合金板材循环氧化和室温力学性能的影响[J]. 材料研究学报, 2023, 37(7): 523-534.
[4] 蒋梦蕾, 代斌斌, 陈亮, 刘慧, 闵师领, 杨帆, 侯娟. 选区激光熔化成形尺寸对304L不锈钢点蚀性能的影响[J]. 材料研究学报, 2023, 37(5): 353-361.
[5] 张帅杰, 吴谦, 陈志堂, 郑滨松, 张磊, 徐翩. MnMg-Y-Cu合金的组织和性能的影响[J]. 材料研究学报, 2023, 37(5): 362-370.
[6] 杨宝磊, 刘廷光, 苏香林, 范宇, 邱亮, 陆永浩. 热老化对316LN力学性能和晶间腐蚀敏感性的影响[J]. 材料研究学报, 2023, 37(5): 381-390.
[7] 闫春良, 郭鹏, 周靖远, 汪爱英. Cu掺杂非晶碳薄膜的电学性能及其载流子输运行为[J]. 材料研究学报, 2023, 37(10): 747-758.
[8] 陈开旺, 张鹏林, 李树旺, 牛显明, 胡春莲. 莫来石粉末化学镀镍和涂层的高温摩擦学性能[J]. 材料研究学报, 2023, 37(1): 39-46.
[9] 单位摇, 王永利, 李静, 熊良银, 杜晓明, 刘实. 锆合金表面Cr基涂层的耐高温氧化性能[J]. 材料研究学报, 2022, 36(9): 699-705.
[10] 程红杰, 刘黄娟, 姜婷, 王法军, 李文. 近红外反射超疏水黄色涂层的制备和性能[J]. 材料研究学报, 2022, 36(9): 687-698.
[11] 陈杰, 李红英, 周文浩, 张青学, 汤伟, 刘丹. 热输入对Q1100钢焊接接头低温韧性及耐蚀性能的影响[J]. 材料研究学报, 2022, 36(8): 617-627.
[12] 蔡雨升, 韩洪智, 任德春, 吉海宾, 雷家峰. 化学腐蚀工艺对激光选区熔化成形TC4钛合金表面粗糙度的影响[J]. 材料研究学报, 2022, 36(6): 435-442.
[13] 杨留洋, 谭卓伟, 李同跃, 张大磊, 邢少华, 鞠虹. 利用WBEEIS测试技术对管道缺陷区动态冲刷腐蚀行为的研究[J]. 材料研究学报, 2022, 36(5): 381-391.
[14] 张红亮, 赵国庆, 欧军飞, Amirfazli Alidad. 基于聚多巴胺的超疏水棉织物的一锅法制备及其油水分离性能[J]. 材料研究学报, 2022, 36(2): 114-122.
[15] 崔丽, 孙丽丽, 郭鹏, 马鑫, 王舒远, 汪爱英. 沉积时间对聚醚醚酮表面类金刚石薄膜的结构和性能的影响[J]. 材料研究学报, 2022, 36(11): 801-810.