Please wait a minute...
材料研究学报  2020, Vol. 34 Issue (4): 311-320    DOI: 10.11901/1005.3093.2019.471
  研究论文 本期目录 | 过刊浏览 |
多级结构形貌β-Bi2O3/BiOCOOH复合光催化剂的制备及其光催化性能
薛文兴1, 谢丽燕2(), 王万军3, 刘明华1, 黄建辉2
1.福州大学环境与资源学院 福州 350002
2.莆田学院环境与生物工程学院 福建省新型污染物生态毒理效应与控制重点实验室;生态信息图谱福建省高校重点实验室 莆田 351100
3.广东工业大学环境科学与工程学院 环境卫生与污染控制研究所 广州 510006
Preparation and Photocatalytic Properties of Composite Photocatalyst β-Bi2O3/BiOCOOH with Hierarchical Structure
XUE Wenxing1, XIE Liyan2(), WANG Wanjun3, LIU Minghua1, HUANG Jianhui2
1.College of Environment and Resources, Fuzhou University, Fuzhou 350002, China
2.College of Environmental and Biological Engineering, Fujian Provincial Key Laboratory of Ecology-toxicological Effects & Control for Emerging Contaminants, Key Laboratory of Ecological Environment and Information Atlas, Fujian Provincial University, Putian University, Putian 351100, China
3.Institute of Environmental Health and Pollution Control, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
引用本文:

薛文兴, 谢丽燕, 王万军, 刘明华, 黄建辉. 多级结构形貌β-Bi2O3/BiOCOOH复合光催化剂的制备及其光催化性能[J]. 材料研究学报, 2020, 34(4): 311-320.
Wenxing XUE, Liyan XIE, Wanjun WANG, Minghua LIU, Jianhui HUANG. Preparation and Photocatalytic Properties of Composite Photocatalyst β-Bi2O3/BiOCOOH with Hierarchical Structure[J]. Chinese Journal of Materials Research, 2020, 34(4): 311-320.

全文: PDF(10816 KB)   HTML
摘要: 

用水热法合成具有多级结构形貌的甲酸氧铋,将其作为自牺牲前驱体调节热处理温度制备出不同的产物,其中一种是具有可见光响应的新型β-Bi2O3/BiOCOOH复合光催化材料。使用X射线衍射(XRD)、紫外-可见漫反射光谱(UV-Vis DRS)、扫描电子显微镜(SEM)和光电化学响应等手段表征不同温度热处理后产物的晶型结构、光吸收性能、形貌、光电流等物理化学性质。以罗丹明B作为光催化活性评价的探针分子,研究了在不同温度热处理产物的可见光光催化性能。结果表明,热处理温度从250℃提高到330℃、400℃、450℃,甲酸氧铋发生以下转变:BiOCOOH→β-Bi2O3/BiOCOOH→β-Bi2O3α-Bi2O3。在330℃和350℃热处理后的β-Bi2O3/BiOCOOH复合光催化剂可见光催化性能最优,其降解速率比β-Bi2O3α-Bi2O3分别高6.7倍和100倍。对罗丹明B表现出最佳脱色率的样品,光照90 min的矿化率可达88%。与纯相物质(β-Bi2O3、BiOCOOH)相比β-Bi2O3/BiOCOOH复合材料具有更大的光电流响应和更小的阻抗。结合UV-vis DRS和莫特-肖特基曲线可推测,β-Bi2O3与BiOCOOH可紧密结合形成Z-型光催化结构,具有更高的光生载流子分离效率并实现光生电荷的分离。

关键词 复合材料可见光催化自牺牲前驱体β-Bi2O3/BiOCOOH    
Abstract

The BiOCOOH with multi-layered structure was synthesized by hydrothermal method, and then was used as sacrificial precursor to prepare several different products through adjusting heat treatment temperatures, including a new type of composite photocatalytic material β-Bi2O3/BiOCOOH with visible light response. The crystal structure, optical absorption performance, morphology, photocurrent and other physical and chemical properties of the products were characterized by means of X-ray diffraction (XRD), UV-Vis DRS, scanning electron microscope (SEM), photoelectric chemical response and other characterization methods. Their photocatalytic activity was assessed via degradation test of Rhodamine B solution. The results show that when the heat treatment temperature gradually increased from 250℃ to 330℃, 400℃ and 450℃, the following transformation occurred: BiOCOOH→β-Bi2O3/BiOCOOH→β-Bi2O3α-Bi2O3. The visible light catalytic performance of the composite photocatalyst β-Bi2O3/BiOCOOH is the best. The degradation rate of Rhodamine B in the presence of β-Bi2O3/BiOCOOH composite photocatalyst was 6.7 times and 100 times higher than those in the presence of β-Bi2O3 and α-Bi2O3, respectively. The samples that showed the best decolorization rate for rhodamine B had a mineralization rate of 88% within 90 minutes of illumination. Electrochemical test results show that the composite β-Bi2O3/BiOCOOH has a larger photocurrent response and a smaller impedance than the plain materials β-Bi2O3 and BiOCOOH. In addition, by considering both of UV-Vis DRS and Mott-Shottky curves comprehensively, the positions of conduction and valence bands of β-Bi2O3 and BiOCOOH can be estimated respectively, and it is speculated that β-Bi2O3 and BiOCOOH can be closely combined to form z-type photocatalytic structure, thus having higher separation efficiency of photogenerated carriers and effective separation of photogenerated charges.

Key wordscomposite    visible-light photocatalysis    self-sacrificial precursor    β-Bi2O3/BiOCOOH
收稿日期: 2019-10-13     
ZTFLH:  O643.36  
基金资助:福建省自然科学基金(No. 2019N0022);福建省自然科学基金(No. 2018J01439);莆田市科技局科技计划(No. 2016S1001);莆田市科技局科技计划(No. 2018NP2001);福建省教育厅科技项目(No. JT180468);福建省高校新世纪人才计划
作者简介: 薛文兴,男,1994年生,硕士生
图1  样品的制备流程图
图2  在不同温度热处理样品的XRD谱图
图3  不同样品的SEM照片
图4  β-Bi2O3/BiOCOOH样品的TEM和HRTEM照片
图5  不同样品的紫外可见分光光度图谱
图6  前驱体BiOCOOH、β-Bi2O3/BiOCOOH、β-Bi2O3和α-Bi2O3的N2吸-脱附等温线
图7  在330℃热处理样品β-Bi2O3/BiOCOOH降解RhB溶液、在400℃热处理样品β-Bi2O3降解RhB溶液、在不同温度热处理样品对RhB溶液的降解活性对比以及光催化降解反应的一级反应动力学拟合曲线
图8  β-Bi2O3/BiOCOOH光催化体系对罗丹明B溶液的TOC去除率
图9  BiOCOOH、β-Bi2O3和β-Bi2O3/BiOCOOH的光电流瞬态响应
图10  BiOCOOH、β-Bi2O3、α-Bi2O3和β-Bi2O3/BiOCOOH的Nyquist阻抗图
图11  BiOCOOH和β-Bi2O3的莫特-肖特基曲线
图12  β-Bi2O3/BiOCOOH复合材料在可见光下的电子-空穴分离示意图
[1] Hoffmann M, Martin S, Choi W, et al. Environmental applications of semiconductor photocatalysis [J]. Chem. Rev., 1995, 95: 69
doi: 10.1021/cr00033a004
[2] Liu X Y, Chen Z, Cao M S. NiFe layered double hydroxide on nitrogen doped TiO2 nanotube arrays toward efficient oxygen evolution [J]. ACS Appl. Energy Mater., 2019, 2: 5960
doi: 10.1021/acsaem.9b01064
[3] Xiao X, Hu R P, Liu C, et al. Facile large-scale synthesis of β-Bi2O3 nanospheres as a highly efficient photocatalyst for the degradation of acetaminophen under visible light irradiation [J]. Appl. Catal., 2013, 140-141B: 433
[4] Chang X F, Huang J, Tan Q Y, et al. Photocatalytic degradation of PCP-Na over BiOI nanosheets under simulated sunlight irradiation [J]. Catal. Commun., 2009, 10: 1957
doi: 10.1016/j.catcom.2009.06.023
[5] Chang X F, Huang J, Cheng C, et al. BiOX (X=Cl, Br, I) photocatalysts prepared using NaBiO3 as the Bi source: Characterization and catalytic performance [J]. Catal. Commun., 2010, 11: 460
doi: 10.1186/1471-2458-11-460 pmid: 21663604
[6] Huo Y N, Zhang J, Miao M, et al. Solvothermal synthesis of flower-like BiOBr microspheres with highly visible-light photocatalytic performances [J]. Appl. Catal., 2012, 111-112B: 334
[7] Sun D F, Li J P, Feng Z H, et al. Solvothermal synthesis of BiOCl flower-like hierarchical structures with high photocatalytic activity [J]. Catal. Commun., 2014, 51: 1
[8] Jiang H Y, Dai H X, Meng X, et al. Porous olive-like BiVO4: Alcoho-hydrothermal preparation and excellent visible-light-driven photocatalytic performance for the degradation of phenol [J]. Appl. Catal., 2011, 105B: 326
[9] Wang Z Q, Luo W J, Yan S C, et al. BiVO4 nano-leaves: Mild synthesis and improved photocatalytic activity for O2 production under visible light irradiation [J]. CrystEngComm, 2011, 13: 2500
doi: 10.1039/c0ce00799d
[10] Li M T, Zhao L, Guo L J. Preparation and photoelectrochemical study of BiVO4 thin films deposited by ultrasonic spray pyrolysis [J]. Int. J. Hydrogen Energ., 2010, 35: 7127
doi: 10.1016/j.ijhydene.2010.02.026
[11] Wang L J, Wang W Z, Zhang W W, et al. Superior photoelectrochemical properties of BiVO4 nanofilms enhanced by PbS quantum dots decoration [J]. Appl. Surf. Sci., 2018, 427: 553
doi: 10.1016/j.apsusc.2017.09.014
[12] Zhang L S, Wang H L, Chen Z G, et al. Bi2WO6 micro/nano-structures: Synthesis, modifications and visible-light-driven photocatalytic applications [J]. Appl. Catal., 2011, 106B: 1
[13] Wu L, Bi J H, Li Z H, et al. Rapid preparation of Bi2WO6 photocatalyst with nanosheet morphology via microwave-assisted solvothermal synthesis [J]. Catal. Today, 2008, 131: 15
doi: 10.1016/j.cattod.2007.10.089
[14] Hu R P, Xiao X, Tu S H, et al. Synthesis of flower-like heterostructured β-Bi2O3/Bi2O2CO3 microspheres using Bi2O2CO3 self-sacrifice precursor and its visible-light-induced photocatalytic degradation of o-phenylphenol [J]. Appl. Catal., 2015, 163B: 510
[15] Tang J L, Zhao H P, Li G F, et al. Citrate/Urea/Solvent Mediated Self-Assembly of (BiO)2CO3 hierarchical nanostructures and their associated photocatalytic performance [J]. Ind. Eng. Chem. Res., 2013, 52: 12604
doi: 10.1021/ie401840x
[16] Xiong J Y, Cheng G, Lu Z, et al. BiOCOOH hierarchical nanostructures: Shape-controlled solvothermal synthesis and photocatalytic degradation performances [J]. CrystEngComm, 2011, 13: 2381
doi: 10.1039/c0ce00705f
[17] Xia S H, Dong C, Wei X W, et al. Reduced graphene oxide modified flower-like BiOCOOH architectures with enhanced photocatalytic activity [J]. Mater. Lett., 2015, 156: 36
doi: 10.1016/j.matlet.2015.04.135
[18] Huang H W, He Y, Lin Z S, et al. Two novel bi-based borate photocatalysts: crystal structure, electronic structure, photoelectrochemical properties, and photocatalytic activity under simulated solar light irradiation [J]. J. Phys. Chem., 2013, 117C: 22986
[19] Chai B, Wang X. Enhanced visible light photocatalytic activity of BiOI/BiOCOOH composites synthesized via ion exchange strategy [J]. RSC Adv., 2015, 5: 7589
doi: 10.1039/C4RA10999F
[20] Zhou L, Wang W Z, Xu H L, et al. Bi2O3 Hierarchical nanostructures: controllable synthesis, growth mechanism, and their application in photocatalysis [J]. Chem. Eur. J., 2008, 15: 1776
doi: 10.1002/chem.200801234 pmid: 19115297
[21] Zheng F L, Li G R, Ou Y N, et al. Synthesis of hierarchical rippled Bi2O3 nanobelts for supercapacitor applications [J]. Chem. Commun., 2010, 46: 5021
doi: 10.1039/c002126a pmid: 20526518
[22] Hao W C, Gao Y, Jing X, et al. Visible light photocatalytic properties of metastable γ-Bi2O3 with different morphologies [J]. J. Mater. Sci. Technol., 2014, 30: 192
doi: 10.1016/j.jmst.2013.09.023
[23] Li Y J, Yang F, Yu Y. Enhanced photocatalytic activity of α-Bi2O3 with high electron-hole mobility by codoping approach: A first-principles study [J]. Appl. Surf. Sci., 2015, 358: 449
doi: 10.1016/j.apsusc.2015.08.098
[24] Iyyapushpam S, Nishanthi S T, Padiyan D P. Enhanced photocatalytic degradation of methyl orange by gamma Bi2O3 and its kinetics [J]. J. Alloys Compd., 2014, 601: 85
doi: 10.1016/j.jallcom.2014.02.142
[25] Zhang L S, Wang W Z, Yang J, et al. Sonochemical synthesis of nanocrystallite Bi2O3 as a visible-light-driven photocatalyst [J]. Appl. Catal., 2006, 308A: 105
[26] Qiu Y F, Yang M L, Fan H B, et al. Nanowires of α- and β-Bi2O3: phase-selective synthesis and application in photocatalysis [J]. CrystEngComm, 2011, 13: 1843
doi: 10.1039/c0ce00508h
[27] Jalalah M, Faisal M, Bouzid H, et al. Comparative study on photocatalytic performances of crystalline α- and β-Bi2O3 nanoparticles under visible light [J]. J. Ind. Eng. Chem., 2015, 30: 183
[28] Ma J, Zhang L Z, Wang Y H, et al. Mechanism of 2, 4-dinitrophenol photocatalytic degradation by ζ-Bi2O3/Bi2MoO6 composites under solar and visible light irradiation [J]. Chem. Eng. J., 2014, 251: 371
doi: 10.1016/j.cej.2014.04.085
[29] Xu Y S, Zhang Z J, Zhang W D. Facile preparation of heterostructured Bi2O3/Bi2MoO6 hollow microspheres with enhanced visible-light-driven photocatalytic and antimicrobial activity [J]. Mater. Res. Bull., 2013, 48: 1420
doi: 10.1016/j.materresbull.2012.12.063
[30] Hao Y J, Li F T, Chen F, et al. In situ one-step combustion synthesis of Bi2O3/Bi2WO6 heterojunctions with notable visible light photocatalytic activities [J]. Mater. Lett., 2014, 124: 1
doi: 10.1016/j.matlet.2014.03.036
[31] Gui M S, Zhang W D, Su Q X, et al. Preparation and visible light photocatalytic activity of Bi2O3/Bi2WO6 heterojunction photocatalysts [J]. J. Solid State Chem., 2011, 184: 1977
doi: 10.1016/j.jssc.2011.05.057
[32] Vignesh K, Priyanka R, Rajarajan M, et al. Photoreduction of Cr(VI) in water using Bi2O3-ZrO2 nanocomposite under visible light irradiation [J]. Mat. Sci. Eng., 2013, 178B: 149
doi: 10.1007/s11356-017-0255-0 pmid: 29022219
[33] Bale S, Rahman S, Awasthi A M, et al. Role of Bi2O3 content on physical, optical and vibrational studies in Bi2O3-ZnO-B2O3 glasses [J]. J Alloys Compd, 2008, 460: 699
doi: 10.1016/j.jallcom.2007.06.090
[34] Shan L W, Wang G L, Liu L Z, et al. Band alignment and enhanced photocatalytic activation for α-Bi2O3/BiOCl (001) core-shell heterojunction [J]. J. Mol. Catal., 2015, 406A: 145
[35] Kong D S. The influence of fluoride on the physicochemical properties of anodic oxide films formed on titanium surfaces [J]. Langmuir, 2008, 24: 5324
doi: 10.1021/la703258e pmid: 18442276
[36] Chen D, Li J H. Interfacial functionalization of TiO2 with smart polymers: ph-controlled switching of photocurrent direction [J]. J. Phys. Chem., 2010, 114C: 10478
[37] Wang L J, Wang W Z, Chen Y L, et al. Heterogeneous p-n junction CdS/Cu2O nanorod arrays: synthesis and superior visible-light-driven photoelectrochemical performance for hydrogen evolution [J]. ACS Appl. Mater. Interfaces, 2018, 10: 11652
doi: 10.1021/acsami.7b19530 pmid: 29544248
[1] 潘新元, 蒋津, 任云飞, 刘莉, 李景辉, 张明亚. 热挤压钛/钢复合管的微观组织和性能[J]. 材料研究学报, 2023, 37(9): 713-720.
[2] 刘瑞峰, 仙运昌, 赵瑞, 周印梅, 王文先. 钛合金/不锈钢复合板的放电等离子烧结技术制备及其性能[J]. 材料研究学报, 2023, 37(8): 581-589.
[3] 季雨辰, 刘树和, 张天宇, 查成. MXene在锂硫电池中应用的研究进展[J]. 材料研究学报, 2023, 37(7): 481-494.
[4] 王伟, 解泽磊, 屈怡珅, 常文娟, 彭怡晴, 金杰, 王快社. Graphene/SiO2 纳米复合材料作为水基润滑添加剂的摩擦学性能[J]. 材料研究学报, 2023, 37(7): 543-553.
[5] 张藤心, 王函, 郝亚斌, 张建岗, 孙新阳, 曾尤. 基于界面氢键结构的石墨烯/聚合物复合材料的阻尼性能[J]. 材料研究学报, 2023, 37(6): 401-407.
[6] 邵萌萌, 陈招科, 熊翔, 曾毅, 王铎, 王徐辉. C/C-ZrC-SiC复合材料的Si2+ 离子辐照行为[J]. 材料研究学报, 2023, 37(6): 472-480.
[7] 张锦中, 刘晓云, 杨健茂, 周剑锋, 查刘生. 温度响应性双面纳米纤维的制备和性能[J]. 材料研究学报, 2023, 37(4): 248-256.
[8] 王刚, 杜雷雷, 缪自强, 钱凯成, 杜向博文, 邓泽婷, 李仁宏. 聚多巴胺改性碳纤维增强尼龙6复合材料的界面性能[J]. 材料研究学报, 2023, 37(3): 203-210.
[9] 林师峰, 徐东安, 庄艳歆, 张海峰, 朱正旺. TiZr基非晶/TC21双层复合材料的制备和力学性能[J]. 材料研究学报, 2023, 37(3): 193-202.
[10] 苗琪, 左孝青, 周芸, 王应武, 郭路, 王坦, 黄蓓. 304不锈钢纤维/ZL104铝合金复合泡沫的孔结构、力学、吸声性能及其机理[J]. 材料研究学报, 2023, 37(3): 175-183.
[11] 张开银, 王秋玲, 向军. FeCo/SnO2 复合纳米纤维的制备及其吸波性能[J]. 材料研究学报, 2023, 37(2): 102-110.
[12] 周聪, 昝宇宁, 王东, 王全兆, 肖伯律, 马宗义. (Al11La3+Al2O3)/Al复合材料的高温性能及其强化机制[J]. 材料研究学报, 2023, 37(2): 81-88.
[13] 罗昱, 陈秋云, 薛丽红, 张五星, 严有为. 钠离子电池双层碳包覆Na3V2(PO4)3 正极材料的超声辅助溶液燃烧合成及其电化学性能[J]. 材料研究学报, 2023, 37(2): 129-135.
[14] 刘志华, 岳远超, 丘一帆, 卜湘, 阳涛. g-C3N4/Ag/BiOBr复合材料的制备及其光催化还原硝酸盐氮[J]. 材料研究学报, 2023, 37(10): 781-790.
[15] 谢东航, 潘冉, 朱士泽, 王东, 刘振宇, 昝宇宁, 肖伯律, 马宗义. 增强颗粒尺寸对B4C/Al-Zn-Mg-Cu复合材料微观组织及力学性能的影响[J]. 材料研究学报, 2023, 37(10): 731-738.