|
|
多级结构形貌β-Bi2O3/BiOCOOH复合光催化剂的制备及其光催化性能 |
薛文兴1, 谢丽燕2( ), 王万军3, 刘明华1, 黄建辉2 |
1.福州大学环境与资源学院 福州 350002 2.莆田学院环境与生物工程学院 福建省新型污染物生态毒理效应与控制重点实验室;生态信息图谱福建省高校重点实验室 莆田 351100 3.广东工业大学环境科学与工程学院 环境卫生与污染控制研究所 广州 510006 |
|
Preparation and Photocatalytic Properties of Composite Photocatalyst β-Bi2O3/BiOCOOH with Hierarchical Structure |
XUE Wenxing1, XIE Liyan2( ), WANG Wanjun3, LIU Minghua1, HUANG Jianhui2 |
1.College of Environment and Resources, Fuzhou University, Fuzhou 350002, China 2.College of Environmental and Biological Engineering, Fujian Provincial Key Laboratory of Ecology-toxicological Effects & Control for Emerging Contaminants, Key Laboratory of Ecological Environment and Information Atlas, Fujian Provincial University, Putian University, Putian 351100, China 3.Institute of Environmental Health and Pollution Control, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China |
引用本文:
薛文兴, 谢丽燕, 王万军, 刘明华, 黄建辉. 多级结构形貌β-Bi2O3/BiOCOOH复合光催化剂的制备及其光催化性能[J]. 材料研究学报, 2020, 34(4): 311-320.
Wenxing XUE,
Liyan XIE,
Wanjun WANG,
Minghua LIU,
Jianhui HUANG.
Preparation and Photocatalytic Properties of Composite Photocatalyst β-Bi2O3/BiOCOOH with Hierarchical Structure[J]. Chinese Journal of Materials Research, 2020, 34(4): 311-320.
[1] |
Hoffmann M, Martin S, Choi W, et al. Environmental applications of semiconductor photocatalysis [J]. Chem. Rev., 1995, 95: 69
doi: 10.1021/cr00033a004
|
[2] |
Liu X Y, Chen Z, Cao M S. NiFe layered double hydroxide on nitrogen doped TiO2 nanotube arrays toward efficient oxygen evolution [J]. ACS Appl. Energy Mater., 2019, 2: 5960
doi: 10.1021/acsaem.9b01064
|
[3] |
Xiao X, Hu R P, Liu C, et al. Facile large-scale synthesis of β-Bi2O3 nanospheres as a highly efficient photocatalyst for the degradation of acetaminophen under visible light irradiation [J]. Appl. Catal., 2013, 140-141B: 433
|
[4] |
Chang X F, Huang J, Tan Q Y, et al. Photocatalytic degradation of PCP-Na over BiOI nanosheets under simulated sunlight irradiation [J]. Catal. Commun., 2009, 10: 1957
doi: 10.1016/j.catcom.2009.06.023
|
[5] |
Chang X F, Huang J, Cheng C, et al. BiOX (X=Cl, Br, I) photocatalysts prepared using NaBiO3 as the Bi source: Characterization and catalytic performance [J]. Catal. Commun., 2010, 11: 460
doi: 10.1186/1471-2458-11-460
pmid: 21663604
|
[6] |
Huo Y N, Zhang J, Miao M, et al. Solvothermal synthesis of flower-like BiOBr microspheres with highly visible-light photocatalytic performances [J]. Appl. Catal., 2012, 111-112B: 334
|
[7] |
Sun D F, Li J P, Feng Z H, et al. Solvothermal synthesis of BiOCl flower-like hierarchical structures with high photocatalytic activity [J]. Catal. Commun., 2014, 51: 1
|
[8] |
Jiang H Y, Dai H X, Meng X, et al. Porous olive-like BiVO4: Alcoho-hydrothermal preparation and excellent visible-light-driven photocatalytic performance for the degradation of phenol [J]. Appl. Catal., 2011, 105B: 326
|
[9] |
Wang Z Q, Luo W J, Yan S C, et al. BiVO4 nano-leaves: Mild synthesis and improved photocatalytic activity for O2 production under visible light irradiation [J]. CrystEngComm, 2011, 13: 2500
doi: 10.1039/c0ce00799d
|
[10] |
Li M T, Zhao L, Guo L J. Preparation and photoelectrochemical study of BiVO4 thin films deposited by ultrasonic spray pyrolysis [J]. Int. J. Hydrogen Energ., 2010, 35: 7127
doi: 10.1016/j.ijhydene.2010.02.026
|
[11] |
Wang L J, Wang W Z, Zhang W W, et al. Superior photoelectrochemical properties of BiVO4 nanofilms enhanced by PbS quantum dots decoration [J]. Appl. Surf. Sci., 2018, 427: 553
doi: 10.1016/j.apsusc.2017.09.014
|
[12] |
Zhang L S, Wang H L, Chen Z G, et al. Bi2WO6 micro/nano-structures: Synthesis, modifications and visible-light-driven photocatalytic applications [J]. Appl. Catal., 2011, 106B: 1
|
[13] |
Wu L, Bi J H, Li Z H, et al. Rapid preparation of Bi2WO6 photocatalyst with nanosheet morphology via microwave-assisted solvothermal synthesis [J]. Catal. Today, 2008, 131: 15
doi: 10.1016/j.cattod.2007.10.089
|
[14] |
Hu R P, Xiao X, Tu S H, et al. Synthesis of flower-like heterostructured β-Bi2O3/Bi2O2CO3 microspheres using Bi2O2CO3 self-sacrifice precursor and its visible-light-induced photocatalytic degradation of o-phenylphenol [J]. Appl. Catal., 2015, 163B: 510
|
[15] |
Tang J L, Zhao H P, Li G F, et al. Citrate/Urea/Solvent Mediated Self-Assembly of (BiO)2CO3 hierarchical nanostructures and their associated photocatalytic performance [J]. Ind. Eng. Chem. Res., 2013, 52: 12604
doi: 10.1021/ie401840x
|
[16] |
Xiong J Y, Cheng G, Lu Z, et al. BiOCOOH hierarchical nanostructures: Shape-controlled solvothermal synthesis and photocatalytic degradation performances [J]. CrystEngComm, 2011, 13: 2381
doi: 10.1039/c0ce00705f
|
[17] |
Xia S H, Dong C, Wei X W, et al. Reduced graphene oxide modified flower-like BiOCOOH architectures with enhanced photocatalytic activity [J]. Mater. Lett., 2015, 156: 36
doi: 10.1016/j.matlet.2015.04.135
|
[18] |
Huang H W, He Y, Lin Z S, et al. Two novel bi-based borate photocatalysts: crystal structure, electronic structure, photoelectrochemical properties, and photocatalytic activity under simulated solar light irradiation [J]. J. Phys. Chem., 2013, 117C: 22986
|
[19] |
Chai B, Wang X. Enhanced visible light photocatalytic activity of BiOI/BiOCOOH composites synthesized via ion exchange strategy [J]. RSC Adv., 2015, 5: 7589
doi: 10.1039/C4RA10999F
|
[20] |
Zhou L, Wang W Z, Xu H L, et al. Bi2O3 Hierarchical nanostructures: controllable synthesis, growth mechanism, and their application in photocatalysis [J]. Chem. Eur. J., 2008, 15: 1776
doi: 10.1002/chem.200801234
pmid: 19115297
|
[21] |
Zheng F L, Li G R, Ou Y N, et al. Synthesis of hierarchical rippled Bi2O3 nanobelts for supercapacitor applications [J]. Chem. Commun., 2010, 46: 5021
doi: 10.1039/c002126a
pmid: 20526518
|
[22] |
Hao W C, Gao Y, Jing X, et al. Visible light photocatalytic properties of metastable γ-Bi2O3 with different morphologies [J]. J. Mater. Sci. Technol., 2014, 30: 192
doi: 10.1016/j.jmst.2013.09.023
|
[23] |
Li Y J, Yang F, Yu Y. Enhanced photocatalytic activity of α-Bi2O3 with high electron-hole mobility by codoping approach: A first-principles study [J]. Appl. Surf. Sci., 2015, 358: 449
doi: 10.1016/j.apsusc.2015.08.098
|
[24] |
Iyyapushpam S, Nishanthi S T, Padiyan D P. Enhanced photocatalytic degradation of methyl orange by gamma Bi2O3 and its kinetics [J]. J. Alloys Compd., 2014, 601: 85
doi: 10.1016/j.jallcom.2014.02.142
|
[25] |
Zhang L S, Wang W Z, Yang J, et al. Sonochemical synthesis of nanocrystallite Bi2O3 as a visible-light-driven photocatalyst [J]. Appl. Catal., 2006, 308A: 105
|
[26] |
Qiu Y F, Yang M L, Fan H B, et al. Nanowires of α- and β-Bi2O3: phase-selective synthesis and application in photocatalysis [J]. CrystEngComm, 2011, 13: 1843
doi: 10.1039/c0ce00508h
|
[27] |
Jalalah M, Faisal M, Bouzid H, et al. Comparative study on photocatalytic performances of crystalline α- and β-Bi2O3 nanoparticles under visible light [J]. J. Ind. Eng. Chem., 2015, 30: 183
|
[28] |
Ma J, Zhang L Z, Wang Y H, et al. Mechanism of 2, 4-dinitrophenol photocatalytic degradation by ζ-Bi2O3/Bi2MoO6 composites under solar and visible light irradiation [J]. Chem. Eng. J., 2014, 251: 371
doi: 10.1016/j.cej.2014.04.085
|
[29] |
Xu Y S, Zhang Z J, Zhang W D. Facile preparation of heterostructured Bi2O3/Bi2MoO6 hollow microspheres with enhanced visible-light-driven photocatalytic and antimicrobial activity [J]. Mater. Res. Bull., 2013, 48: 1420
doi: 10.1016/j.materresbull.2012.12.063
|
[30] |
Hao Y J, Li F T, Chen F, et al. In situ one-step combustion synthesis of Bi2O3/Bi2WO6 heterojunctions with notable visible light photocatalytic activities [J]. Mater. Lett., 2014, 124: 1
doi: 10.1016/j.matlet.2014.03.036
|
[31] |
Gui M S, Zhang W D, Su Q X, et al. Preparation and visible light photocatalytic activity of Bi2O3/Bi2WO6 heterojunction photocatalysts [J]. J. Solid State Chem., 2011, 184: 1977
doi: 10.1016/j.jssc.2011.05.057
|
[32] |
Vignesh K, Priyanka R, Rajarajan M, et al. Photoreduction of Cr(VI) in water using Bi2O3-ZrO2 nanocomposite under visible light irradiation [J]. Mat. Sci. Eng., 2013, 178B: 149
doi: 10.1007/s11356-017-0255-0
pmid: 29022219
|
[33] |
Bale S, Rahman S, Awasthi A M, et al. Role of Bi2O3 content on physical, optical and vibrational studies in Bi2O3-ZnO-B2O3 glasses [J]. J Alloys Compd, 2008, 460: 699
doi: 10.1016/j.jallcom.2007.06.090
|
[34] |
Shan L W, Wang G L, Liu L Z, et al. Band alignment and enhanced photocatalytic activation for α-Bi2O3/BiOCl (001) core-shell heterojunction [J]. J. Mol. Catal., 2015, 406A: 145
|
[35] |
Kong D S. The influence of fluoride on the physicochemical properties of anodic oxide films formed on titanium surfaces [J]. Langmuir, 2008, 24: 5324
doi: 10.1021/la703258e
pmid: 18442276
|
[36] |
Chen D, Li J H. Interfacial functionalization of TiO2 with smart polymers: ph-controlled switching of photocurrent direction [J]. J. Phys. Chem., 2010, 114C: 10478
|
[37] |
Wang L J, Wang W Z, Chen Y L, et al. Heterogeneous p-n junction CdS/Cu2O nanorod arrays: synthesis and superior visible-light-driven photoelectrochemical performance for hydrogen evolution [J]. ACS Appl. Mater. Interfaces, 2018, 10: 11652
doi: 10.1021/acsami.7b19530
pmid: 29544248
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|