Please wait a minute...
材料研究学报  2020, Vol. 34 Issue (4): 304-310    DOI: 10.11901/1005.3093.2019.450
  研究论文 本期目录 | 过刊浏览 |
芳纶浆粕和纳米钛酸钠晶须在汽车摩擦材料中的协同效应
郭客1,2, 张志强1(), 宋仁伯3, 许洁3, 于浩男3
1.辽宁科技大学化学工程学院 鞍山 117022
2.鞍钢集团矿业设计研究院有限公司 鞍山 114004
3.北京科技大学材料科学与工程学院 北京 100083
Synergistic Effect of Aramid Pulp and Nano Sodium Titanate Whisker in Friction Materials for Automotive
GUO Ke1,2, ZHANG Zhiqiang1(), SONG Renbo3, XU Jie3, YU Haonan3
1.School of Chemical Engineering, Liaoning University of Science and Technology, Anshan 117022, China
2.Ansteel Group Mining Design & Research Institute, Anshan 114004, China
3.School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
引用本文:

郭客, 张志强, 宋仁伯, 许洁, 于浩男. 芳纶浆粕和纳米钛酸钠晶须在汽车摩擦材料中的协同效应[J]. 材料研究学报, 2020, 34(4): 304-310.
Ke GUO, Zhiqiang ZHANG, Renbo SONG, Jie XU, Haonan YU. Synergistic Effect of Aramid Pulp and Nano Sodium Titanate Whisker in Friction Materials for Automotive[J]. Chinese Journal of Materials Research, 2020, 34(4): 304-310.

全文: PDF(11830 KB)   HTML
摘要: 

以包括酚醛树脂、芳纶浆粕、纳米钛酸钠晶须、氧化铝、重晶石和二硫化钼的简化配方为基础制备一种摩擦材料,研究芳纶浆粕和纳米钛酸钠晶须的含量对摩擦材料的物理力学性能和摩擦磨损性能的影响。结果表明:随着芳纶浆粕含量的提高摩擦材料试样的布氏硬度呈现提高的趋势;当芳纶浆粕与钛酸钠晶须的比例为3:1时,材料的冲击强度达到最大值0.392 J/cm2,两种增强纤维的均匀混合为摩擦过程中产生高内聚强度的摩擦膜提供了基础,且这个比例产生最佳的协同效应,摩擦系数稳定在0.38~0.45,磨损率为5%。

关键词 复合材料协同效应摩擦磨损芳纶浆粕纳米钛酸钠晶须    
Abstract

Friction materials were prepared based on a simple formulation with six ingredients (phenolic resin, aramid pulp, nano sodium titanate whisker, alumina, barite, molybdenum disulfide). Hardness, impact strength, friction coefficient, wear rate, and morphology of sliding surfaces were carefully examined to investigate the effect of the two different fibrous ingredients, i.e. aramid pulp and nano sodium titanate whisker, in the friction material on various physical and mechanical properties and friction properties. The results show that the Rockwell hardness of friction material increased with the increase of the content of aramid pulp in the formula. When the ratio of aramid pulp to sodium titanate whisker is 3:1, the maximum impact strength of the material reached 0.392 J/cm2. The uniform mixing of two reinforcing fibers provided a basis for the formation of high cohesion friction film during the friction process. When the ratio was 0.75, the best synergistic effect was obtained. At this time the friction coefficient was stable between 0.38 and 0.45, and the wear rate was 5%.

Key wordscomposite    synergistic effects    friction film    aramid pulp    nano sodium titanate whisker
收稿日期: 2019-09-20     
ZTFLH:  U465  
作者简介: 郭客,女,1979年生,高级工程师

Density

/g·cm-3

Fusion point

/℃

Specific heat capacity

/kJ·kg-1·K-1

Coefficient of thermal expansion

/m·℃-1

Hardness

/HM

Elasticity modulus

/GPa

3.8913000.446.5×10-64275
表1  纳米钛酸钠晶须的基本物理性能
图1  钛酸钠晶须的扫描电镜照片
IngredientAP-0AP-0.25AP-0.5AP-0.75AP-1
PR1717171717
AlO33333
MoS55555
B4545454545
AP07.51522.530
ST3022.5157.50
Rate/[AP/AP+ST]00.250.50.751
表2  摩擦材料的基本配方(体积分数, %)
图2  摩擦材料的制备工艺流程
图3  热压成型工艺路线
图4  热处理工艺路线
图5  5种不同成分摩擦材料的力学性能
图6  摩擦材料的摩擦系数与温度的关系
图7  5种不同成分摩擦材料样品的磨损率
图8  芳纶浆粕与纳米钛酸钠晶须的粘结形貌
图9  摩擦测试后不同样品的表面形貌
图10  不同样品磨损颗粒的显微形貌
[1] Bijwe J. Composites as friction materials: Recent developments in non‐asbestos fiber reinforced friction materials [J]. Polymer Composites, 2010, 18(3): 378
[2] Kim S J, Cho M H, Basch R H, et al. Tribological Properties of Polymer Composites Containing Barite (BaSO4) or Potassium Titanate (K2O·6TiO2) [J]. Tribology Letters, 2004, 17(3): 655
[3] Park J H, Jin O C, Kim H R. Friction characteristics of brake pads with aramid fiber and acrylic fiber [J]. Industrial Lubrication & Tribology, 2010, 62(2): 91
[4] Aranganathan N, Mahale V, Bijwe J. Effects of aramid fiber concentration on the friction and wear characteristics of non-asbestos organic friction composites using standardized braking tests [J]. Wear, 2016, s 354-355: 69
[5] Chan D, Stachowiak G W. Review of automotive brake friction materials [J]. Proceedings of the Institution of Mechanical Engineers D: Journal of Automobile Engineering, 2004, 218(9): 953
[6] Kato Takahisa, Magario Akira. The wear of aramid fiber reinforced brake pads: the role of aramid fibers [J]. ASLE Transactions, 2008, 37(3): 559
[7] Liu B W, Xu F, Liu Y, et al. Influences of potassium titanate content on the performance of automobile brake materials [J]. Materials Review, 2017, 31(12): 45
[7] (刘伯威, 徐菲, 刘咏等. 钛酸钾含量对汽车摩擦材料性能的影响 [J]. 材料导报, 2017, 31(12): 45)
[8] Wang X. Preparation and characterization of potassium titanate and multi-reforced on environment-friendly brake pads [D]. Hefei:Hefei University of Technology, 2016
[8] (王旭. 六钛酸钾晶须及多维增强环保型刹车片的制备与表征 [D]. 合肥:合肥工业大学, 2016)
[9] Park J H, Jin O C, Kim H R. Friction characteristics of brake pads with aramid fiber and acrylic fiber [J]. Industrial Lubrication & Tribology, 2010, 62(2): 91
[10] Tang C F, Lu Y. Combinatorial screening of ingredients for steel wool based semimetallic and aramid pulp based nonasbestos organic brake materials [J]. Journal of Reinforced Plastics & Composites, 2004, 23(23): 51
[1] 幸定琴, 涂坚, 罗森, 周志明. C含量对VCoNi中熵合金微观组织和性能的影响[J]. 材料研究学报, 2023, 37(9): 685-696.
[2] 潘新元, 蒋津, 任云飞, 刘莉, 李景辉, 张明亚. 热挤压钛/钢复合管的微观组织和性能[J]. 材料研究学报, 2023, 37(9): 713-720.
[3] 刘瑞峰, 仙运昌, 赵瑞, 周印梅, 王文先. 钛合金/不锈钢复合板的放电等离子烧结技术制备及其性能[J]. 材料研究学报, 2023, 37(8): 581-589.
[4] 季雨辰, 刘树和, 张天宇, 查成. MXene在锂硫电池中应用的研究进展[J]. 材料研究学报, 2023, 37(7): 481-494.
[5] 王伟, 解泽磊, 屈怡珅, 常文娟, 彭怡晴, 金杰, 王快社. Graphene/SiO2 纳米复合材料作为水基润滑添加剂的摩擦学性能[J]. 材料研究学报, 2023, 37(7): 543-553.
[6] 张藤心, 王函, 郝亚斌, 张建岗, 孙新阳, 曾尤. 基于界面氢键结构的石墨烯/聚合物复合材料的阻尼性能[J]. 材料研究学报, 2023, 37(6): 401-407.
[7] 邵萌萌, 陈招科, 熊翔, 曾毅, 王铎, 王徐辉. C/C-ZrC-SiC复合材料的Si2+ 离子辐照行为[J]. 材料研究学报, 2023, 37(6): 472-480.
[8] 张锦中, 刘晓云, 杨健茂, 周剑锋, 查刘生. 温度响应性双面纳米纤维的制备和性能[J]. 材料研究学报, 2023, 37(4): 248-256.
[9] 王刚, 杜雷雷, 缪自强, 钱凯成, 杜向博文, 邓泽婷, 李仁宏. 聚多巴胺改性碳纤维增强尼龙6复合材料的界面性能[J]. 材料研究学报, 2023, 37(3): 203-210.
[10] 林师峰, 徐东安, 庄艳歆, 张海峰, 朱正旺. TiZr基非晶/TC21双层复合材料的制备和力学性能[J]. 材料研究学报, 2023, 37(3): 193-202.
[11] 苗琪, 左孝青, 周芸, 王应武, 郭路, 王坦, 黄蓓. 304不锈钢纤维/ZL104铝合金复合泡沫的孔结构、力学、吸声性能及其机理[J]. 材料研究学报, 2023, 37(3): 175-183.
[12] 张开银, 王秋玲, 向军. FeCo/SnO2 复合纳米纤维的制备及其吸波性能[J]. 材料研究学报, 2023, 37(2): 102-110.
[13] 周聪, 昝宇宁, 王东, 王全兆, 肖伯律, 马宗义. (Al11La3+Al2O3)/Al复合材料的高温性能及其强化机制[J]. 材料研究学报, 2023, 37(2): 81-88.
[14] 罗昱, 陈秋云, 薛丽红, 张五星, 严有为. 钠离子电池双层碳包覆Na3V2(PO4)3 正极材料的超声辅助溶液燃烧合成及其电化学性能[J]. 材料研究学报, 2023, 37(2): 129-135.
[15] 刘志华, 岳远超, 丘一帆, 卜湘, 阳涛. g-C3N4/Ag/BiOBr复合材料的制备及其光催化还原硝酸盐氮[J]. 材料研究学报, 2023, 37(10): 781-790.