Please wait a minute...
材料研究学报  2020, Vol. 34 Issue (4): 241-246    DOI: 10.11901/1005.3093.2019.177
  研究论文 本期目录 | 过刊浏览 |
壁厚对HR2钢柱壳爆轰加载下膨胀断裂行为的影响
卢秋虹1(), 王宁2, 范诚3, 申勇峰2, 刘明涛3, 汤铁钢3, 胡海波3
1.中国科学院金属研究所 沈阳材料科学国家研究中心 沈阳 110016
2.东北大学材料科学与工程学院 沈阳 110819
3.中国工程物理研究院流体物理研究所 绵阳 621900
Effect of Shell Thickness on Expanding Fracture Behavior of HR2 Steel Cylinders under Explosive Loading
LU Qiuhong1(), WANG Ning2, FAN Cheng3, SHEN Yongfeng2, LIU Mingtao3, TANG Tiegang3, HU Haibo3
1.Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
2.School of Materials Science and Engineering, Northeastern University, Shenyang 110819, China
3.Institute of Fluid Physics, China Academy of Engineering Physics, Mianyang 621900, China
引用本文:

卢秋虹, 王宁, 范诚, 申勇峰, 刘明涛, 汤铁钢, 胡海波. 壁厚对HR2钢柱壳爆轰加载下膨胀断裂行为的影响[J]. 材料研究学报, 2020, 34(4): 241-246.
Qiuhong LU, Ning WANG, Cheng FAN, Yongfeng SHEN, Mingtao LIU, Tiegang TANG, Haibo HU. Effect of Shell Thickness on Expanding Fracture Behavior of HR2 Steel Cylinders under Explosive Loading[J]. Chinese Journal of Materials Research, 2020, 34(4): 241-246.

全文: PDF(11076 KB)   HTML
摘要: 

通过对6、12 mm两种不同壁厚的HR2钢柱壳进行爆轰加载实验,对其断裂碎片的宏观形貌、断口的微观形貌以及横截面的变形微观结构进行系统表征,研究了金属柱壳在爆轰加载下的膨胀断裂机理。结果表明,在膨胀断裂过程中壳壁厚度的增大导致HR2钢柱壳由纯剪切断裂变为拉剪混合的断裂模式。断裂碎片的微观结构分析结果表明,柱壳的断裂实际上是剪切裂纹从样品内部剪切带形核并扩展、和拉伸裂纹沿柱壳外表面的形核扩展的共同作用及竞争的结果。薄壁柱壳断裂由样品内裂纹沿剪切带的形核和扩展主导发生剪切断裂,而厚壁柱壳中内侧的裂纹沿剪切带的形核和扩展,但是最外侧则为环向拉应力主导发生拉伸断裂,因此表现出拉剪结合的断裂模式。

关键词 金属材料HR2钢爆轰加载膨胀断裂微观结构剪切带断裂机理    
Abstract

To clarify the fracture mechanism of metal cylinder under explosive loading, HR2 steel cylinders with shell of 6 and 12 mm in thickness respectively were subjected to explosive loading. The fracture fragments were collected after explosion, and then systematically investigated in terms of macroscopic morphology, fracture morphology and deformation microstructure. It is found that when the shell thickness increases, the fracture mode of HR2 cylinder changed from shearing fracture to the mixture of shearing fracture and tensile fracture. The deformation microstructure observation indicates that the failure and fracture of cylinder shell are the result of the combination and competition of cracks-nucleating and -expanding from the shear band and from the outer surface. The fracture of thin cylinder is dominant by the cracks nucleating and expanding from the shear band, presenting shearing fracture mode. The fracture of thick cylinder is the combined action of cracks-nucleating and -expanding from the shear band and from the outer surface, presenting a mode of mixture of shear- and tensile-fracture.

Key wordsmetallic materials    HR2 steel    explosive loading    expanding fracture    microstructure    shear bands    fracture mechanism
收稿日期: 2019-03-28     
ZTFLH:  TG142  
基金资助:国家自然科学基金(No. U1530146);国家自然科学基金(No. 11602249);国家自然科学基金(No. U1730140)
作者简介: 卢秋虹,女,1974年生,副研究员
CSiMnPSNiCrN
<0.04<1.008.00~10.00<0.025<0.0155.50~8.0019.00~21.500.20~0.34
表1  HR2钢的化学成分
图1  HR2钢柱壳芯部和外表面的原始微观结构金相
图2  膨胀爆轰装置的示意图
图3  HR2钢柱薄壁和厚壁壳断裂碎片的宏观形貌、断口形貌和断裂模式示意图。
图4  HR2钢柱壳爆轰加载后横截面的金相组织
图5  HR2钢薄壁柱壳爆轰加载后横截面微观结构。
图6  HR2柱壳爆轰加载后硬度沿柱壳壁厚的分布
图7  柱壳膨胀爆轰加载下所受应力的示意图
[1] Taylor G I. The Fragmentation of Tubular Bombs [A]. Scientific papers of G. I. Taylor, vol. III. [C]. Cambridge: Cambridge University Press; 1963
[2] Hoggatt C R, Recht R F. Fracture behavior of tubular bombs [J]. J. Appl. Phys., 1968, 39(3): 1856
doi: 10.1063/1.1656442
[3] Martineau R L, Anderson C A, Smith F W. Expansion of cylindrical shells subjected to internal explosive detonations [J]. Exp. Mech., 2000, 40(2): 219
doi: 10.1007/BF02325049
[4] Grady D E and Kipp M E. Dynamic Fracture and Fragmentation [J]. J. Mech. Phys. Solids., 1987, 35: 95
doi: 10.1016/0022-5096(87)90030-5
[5] Liu M., Li Y., Hu H., Hu X.. A numerical model for adiabatic shear bands with application to a thick-walled cylinder in 304 stainless steel [J]. Model. Simul. Mater. Sc. 2014, 1: 22
[6] Tang T G, Li Q Z, Sun X L, et al. Strain-rate effects of expanding fracture of 45 steel cylinder shells driven by detonation, Expl. Shock Wave, 2006, 26(2): 129
doi: 10.1007/s00193-015-0586-z
[6] (汤铁钢, 李庆忠, 孙学林等. 45钢柱壳膨胀断裂的应变率效应 [J]. 爆炸与冲击, 2006, 26(2): 129)
[7] Hong L, Zuo X R, Ji Y L, et al. Impact fracture behavior of X80 pipeline steel [J]. Acta. Metall. Sin., 2010, 46(5): 533
doi: DOI: 10.3724/SP.J.1037.2009.00461
[7] (洪良, 左秀荣, 姬颍伦等. X80厚规格X80 管线钢低温断裂行为研究 [J]. 材料研究学报, 2018, 32(1): 33)
doi: 10.11901/1005.3093.2016.791
[8] Lovinger Z, Rikanati A, Rosenberg Z, et al. Electro-magnetic collapse of thick-walled cylinders to investigate spontaneous shear localization [J]. Int. J Impact Eng., 2011, 38(11): 918
doi: 10.1016/j.ijimpeng.2011.06.006
[9] Grady D E. Adiabatic shear failure in brittle solids [J]. Int. J Impact Eng., 2011. 38(7): 661
doi: 10.1016/j.ijimpeng.2011.01.001
[10] Luo S, You Z, Lu L. Thickness effect on fracture behavior of columnar-grained Cu with preferentially oriented nanoscale twins [J]. J. Mater. Res, 2017, 32(24): 4554
doi: 10.1557/jmr.2017.309
[11] Kale A B, Bag A, Hwang J H, et al. The deformation and fracture behaviors of 316L stainless steels fabricated by spark plasma sintering technique under uniaxial tension [J]. Mater. sci. Eng. A, 2017, 707: 362
doi: 10.1016/j.msea.2017.09.058
[12] Wang S J, Sui M L. {332} twins in shock-loaded pure iron [J]. Journal of Chinese Electron Microscopy Society, 2013, 32(4): 308
[12] (王淑娟, 隋曼龄. 冲击加载α-Fe中的{332}孪晶 [J]. 电子显微学报, 2013, 32(4): 308)
[13] Meyers M A, Nesterenko V F, LaSalvia J C, Xue Q. Shear localization in dynamic deformation of materials: microstructural evolution and self-organization [J]. Mater. sci. Eng. A, 2001, 317: 204
doi: 10.1016/S0921-5093(01)01160-1
[14] Wang S J, Sui M L, Chen Y T, et al. Microstructural fingerprints of phase transitions in shock-loaded iron [J]. Sci. Rep., 2013, 3
doi: 10.1038/srep01086 pmid: 23336068
[15] Lee W S, Lin C F, Chen T H, et al. Effects of prestrain on high temperature impact properties of 304L stainless steel [J]. J. Mater. Res., 2010, 25(4): 754
doi: 10.1557/JMR.2010.0088
[16] Qi M L, Qin X Y, Zhang L, et al. Micromechanism of the dynamic damage and spallation of HR2 steel [J]. Ordnance Material Science and Engineering, 2006, 29(3): 33
[16] (祁美兰, 秦晓云, 张林等. HR2钢动态损伤与层裂的微观机理 [J]. 兵器材料科学与工程, 2006, 29(3): 33)
[1] 毛建军, 富童, 潘虎成, 滕常青, 张伟, 谢东升, 吴璐. AlNbMoZrB系难熔高熵合金的Kr离子辐照损伤行为[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] 赵政翔, 廖露海, 徐芳泓, 张威, 李静媛. 超级奥氏体不锈钢24Cr-22Ni-7Mo-0.4N的热变形行为及其组织演变[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] 幸定琴, 涂坚, 罗森, 周志明. C含量对VCoNi中熵合金微观组织和性能的影响[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] 欧阳康昕, 周达, 杨宇帆, 张磊. LPSOMg-Y-Er-Ni合金的组织和拉伸性能[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] 徐利君, 郑策, 冯小辉, 黄秋燕, 李应举, 杨院生. 定向再结晶对热轧态Cu71Al18Mn11合金的组织和超弹性性能的影响[J]. 材料研究学报, 2023, 37(8): 571-580.
[8] 熊诗琪, 刘恩泽, 谭政, 宁礼奎, 佟健, 郑志, 李海英. 固溶处理对一种低偏析高温合金组织的影响[J]. 材料研究学报, 2023, 37(8): 603-613.
[9] 刘继浩, 迟宏宵, 武会宾, 马党参, 周健, 徐辉霞. 喷射成形M3高速钢热处理过程中组织的演变和硬度偏低问题[J]. 材料研究学报, 2023, 37(8): 625-632.
[10] 由宝栋, 朱明伟, 杨鹏举, 何杰. 合金相分离制备多孔金属材料的研究进展[J]. 材料研究学报, 2023, 37(8): 561-570.
[11] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[12] 王昊, 崔君军, 赵明久. 镍基高温合金GH3536带箔材的再结晶与晶粒长大行为[J]. 材料研究学报, 2023, 37(7): 535-542.
[13] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.
[14] 秦鹤勇, 李振团, 赵光普, 张文云, 张晓敏. 固溶温度对GH4742合金力学性能及γ' 相的影响[J]. 材料研究学报, 2023, 37(7): 502-510.
[15] 刘天福, 张滨, 张均锋, 徐强, 宋竹满, 张广平. 缺口应力集中系数对TC4 ELI合金低周疲劳性能的影响[J]. 材料研究学报, 2023, 37(7): 511-522.