Please wait a minute...
材料研究学报  2020, Vol. 34 Issue (11): 835-844    DOI: 10.11901/1005.3093.2020.187
  研究论文 本期目录 | 过刊浏览 |
多尺度功能性填料PVDF基纳米复合材料的制备和性能
陈林, 黄娇, 严磊, 郭怡, 林宏, 蔺海兰, 卞军()
西华大学材料科学与工程学院 成都 610039
Preparation and Properties of PVDF Based Dielectric Nanocomposites Containing Multi-scale Functional Fillers
CHEN Lin, HUANG Jiao, YAN Lei, GUO Yi, LIN Hong, LIN Hailan, BIAN Jun()
College of Materials Science and Engineering, Xihua University, Chengdu 610039, China
引用本文:

陈林, 黄娇, 严磊, 郭怡, 林宏, 蔺海兰, 卞军. 多尺度功能性填料PVDF基纳米复合材料的制备和性能[J]. 材料研究学报, 2020, 34(11): 835-844.
Lin CHEN, Jiao HUANG, Lei YAN, Yi GUO, Hong LIN, Hailan LIN, Jun BIAN. Preparation and Properties of PVDF Based Dielectric Nanocomposites Containing Multi-scale Functional Fillers[J]. Chinese Journal of Materials Research, 2020, 34(11): 835-844.

全文: PDF(8326 KB)   HTML
摘要: 

先以两种直径(50 nm,100 nm)的羟基化钛酸钡(BT)和两种长度(10~20 nm,20~40 nm)的酸化多壁碳纳米管(MWCNTs)为功能填料,进行液相反应制备四种BT/MWCNTs杂化纳米填料(分别记为BT-A/MWCNTs-B,其中A=5,10;B=1,2),再用熔融共混-压板成型技术分别将其与PVDF复合制备出BT-A/MWCNTs-B/PVDF纳米复合材料。使用X射线衍射(XRD)、红外光谱(FTIR)、差示扫描量热分析(DSC)、扫描电子显微镜(SEM)、拉伸性能测试和介电性能测试系统研究了多尺度功能性填料BT-A/MWCNTs-B对这种纳米复合材料的组织结构和结晶性能、介电性能和力学性能的影响。结果表明,与BT/PVDF和MWCNTs/PVDF体系相比,BT-A/MWCNTs-B/PVDF纳米复合材料具有更高的结晶度和热性能,BT-10的含量(质量分数,下同)为16%、MWCNTs-2的含量为5%的BT-10/MWCNTs-2/PVDF纳米复合材料其熔融温度可达173.8℃,比纯PVDF(159.6℃)提高了14.2℃,其结晶度可达43.1%。三相BT-A/MWCNTs-B/PVDF纳米复合材料比两相纳米复合材料具有更优异的介电性能,BT-10/MWCNTs-2/PVDF纳米复合材料100Hz下的介电常数为119,为纯PVDF的14倍,其介电损耗只有0.051。BT-10/MWCNTs-2/PVDF纳米复合材料的拉伸强度和弹性模量分别达到57.7 MPa和1226 MPa。

关键词 复合材料聚偏氟乙烯(PVDF)杂化纳米填料热性能力学性能介电性能    
Abstract

Four hybrid BT/MWCNTs nanomaterials (BT-A/MWCNTs-B, where A= 5,10) were prepared by two kinds of acidified multi-wall carbon nanotubes (MWCNTs) with lengths of 10-20nm and 20-40nm respectively and two kinds of hydroxylated barium titanate (BT) with diameters of 50nm and 100nm respectively. The effect of multi-scale dielectric fillers BT-A/MWCNTs-B on the mechanical properties, heat resistance and dielectric properties of nanocomposites was investigated by means of X-ray diffractometer (XRD), infrared spectra (FTIR), differential scanning calorimetry analysis (DSC), scanning electron microscope (SEM), tensile properties and dielectric properties testing. Results show that compared with BT/PVDF and MWCNTs/PVDF nanocomposites, BT-A/MWCNTs-B/PVDF nanocomposites have higher crystallinity and thermal properties. When the content (mass fraction) of BT-10 and MWCNTs-2 was 16% and 5% respectively, the melting temperature of BT-10/MWCNTs-2/PVDF nanocomposites could reach 173.8℃, which was 14.2℃ higher than that of pure PVDF (159.6℃), and the crystallinity could reach 43.1%. The three-phase BT-A/MWCNTs-B/PVDF nanocomposites had better dielectric performance than that of the two-phase nanocomposites. At 100Hz, the dielectric constant of BT-10/MWCNTs-2/PVDF nanocomposites could reach 119, 14 times of that of pure PVDF, and the dielectric loss was only 0.051. The tensile strength and elastic modulus of BT-10/MWCNTs-2/PVDF nanocomposites were up to 57.7 MPa and 1226 MPa, respectively.

Key wordscomposite    Polyvinylidene fluoride (PVDF)    Hybrid nanometer packing    Thermal performance    Mechanical properties    Dielectric properties
收稿日期: 2020-05-26     
ZTFLH:  TQ332  
基金资助:国家教育部春晖计划(Z2018088);西华大学大健康管理促进中心开放课题基金(DJKG2019-002);2020年西华大学“西华杯”大学生创新创业训练项目(2020133);西华大学Interface创新研究工作室重点建设项目(2019-07);西华大学研究生创新基金(SA2000002910)
作者简介: 陈林,男,1992年生,硕士生
图1  α-PVDF和β-PVDF晶型的结构
图2  填料MWCNTs、MWCNTs-COOH、BT、BT-OH和BT/MWCNTs的红外光谱
图3  BT-A/MWCNTs-B/PVDF介电纳米复合材料的界面化学作用
图4  介电填料BT-A/MWCNTs-B和纳米复合材料BT-A/MWCNTs-B/PVDF的XRD谱
图5  介电填料BT-A/MWCNTs-B和BT-A/MWCNTs-B/PVDF纳米复合材料的SEM照片
图6  PVDF基介电纳米复合材料的力学性能

PVDF

/%

BT-5

/%

BT-10

/%

MWCNTs-1

/%

MWCNTs-2

/%

Tensile strength

/MPa

Elastic modulus

/MPa

Elongation at break/%
100000052.2±1.5373±13184±12
98002056.6±2.0475±11129±10
95005057.8±1.1503±1368±9
900010060.2±1.1592±1551±7
880012064.6±1.5654±1854±5
98020054.8±1.8836±21103±6
96040055.6±1.1889±2356±5
94060055.8±2.0968±2235±3
92080056.1±2.11012±1921±3
840160056.3±1.91046±2419±2
680320053.8±2.21009±2710±2
791605052.9±1.9986±2221±3
791600553.2±2.01011±2319±4
790165057.1±1.81200±2123±4
790160557.7±2.11226±2522±2
表1  PVDF基复合材料的力学性能数据
PVDF/%BT-5/%BT-10/%MWCNTs-1/%MWCNTs-2/%Dielectric constantDielectric loss
100000080.018
980020100.021
950050170.023
9000100220.039
8800120290.045
98020090.020
960400100.024
940600110.026
920800130.029
8401600230.031
6803200310.041
7916050820.058
7916005850.066
79016501020.049
79016051190.051
表2  PVDF基复合材料的介电性能
图7  频率100 Hz下16%BT-10/PVDF,5%MWCNTs-1/PVDF和BT-A/MWCNTs-B/PVDF纳米复合材料的介电常数和介电损耗以及频率100 Hz下16%BT-10/PVDF,5%MWCNTs-1/PVDF和BT-A/MWCNTs-B/PVDF纳米复合材料的介电常数与频率的关系
图8  BT-A/MWCNTs-B/PVDF纳米复合材料的理论模型
图9  BT-A/MWCNTs-B/PVDF纳米复合材料的结晶曲线和熔融曲线
SampleTcp /℃ΔHc /J·g-1Tmp /℃ΔHm /J·g-1Xc /%
PVDF123.936.59159.629.7628.5
BT-5/MWCNTs-1141.239.11170.632.5439.3
BT-5/MWCNTs-2140.238.27171.833.5540.6
BT-10/MWCNTs-1139.240.87172.334.2141.4
BT-10/MWCNTs-2141.341.60173.834.1041.3
表3  BT-A/MWCNTs-B/PVDF纳米复合材料的DSC测试结果
1 Zheng Y, Zhang J, Sun X, et al. Crystal structure regulation of ferroelectric poly(vinylidene fluoride) via controlled melt-recrystallization [J]. Ind. Eng. Chem. Res., 2017, 56(15): 4580
2 Zhou W, Gong Y, Tu L T, et al. Dielectric properties and thermal conductivity of core-shell structured Ni@NiO/poly(vinylidene fluoride) composites [J]. J. Alloys. Compd, 2017, 693: 34643
3 Foreman K, Poddar S, Ducharme S, et al. Ferroelectricity and the phase transition in large area evaporated vinylidene fluoride oligomer thin films [J]. J. Appl. Phys., 2017, 121(19): 34102
4 Garciaiglesias M, Waal B, Gorbunov A V, et al. A versatile method for the preparation of ferroelectric supramolecular materials via radical end-functionalization of vinylidene fluoride oligomers [J]. J. Am. Chem. Soc., 2016, 138(19): 6217
5 Lu, Hongchao, Li Li. Crystalline structure, dielectric, and mechanical properties of simultaneously biaxially stretched polyvinylidene fluoride film [J]. Polym. Adv. Technol., 2018, 29(12): 3056
6 Arjmand M, Sadeghi S, Khajehpour M, et al. Carbon nanotube/graphene nano ribbon/polyvinylidene fluoride hybrid nano-composites: rheological and dielectric properties [J]. J. Phys. Chem. C, 2017, 121(1): 169
7 Luo S, Yu S, Sun R, et al. Nano Ag-deposited BaTiO3 hybrid particles as fillers for polymeric dielectric composites: toward high dielectric constant and suppressed loss [J]. ACS Appl. Mater. Interfaces, 2013, 6(1): 1
8 Yu K, Wang H, Zhou Y, et al. Enhanced dielectric properties of BaTiO3/poly(vinylidene fluoride) nanocomposites for energy storage applications [J]. J. Appl. Phys., 2013, 113(3): 4105
9 Zhang L, Gao R, Hu P, et al. Preparation and dielectric properties of polymer composites incorporated with polydopamine@AgNPs core-satellite particles [J]. RSC Adv. 2016, 10(05): 2216
10 Wei W, Jun R, Luo H, et al. Calcium copper titanate/polyurethane composite films with high dielectric constant, low dielectric loss and super flexibility [J]. Ceram. Int., 2018, 44(05): 5086
11 Keerati M, Prasit T. Improved dielectric properties of poly(vinylidene fluoride) polymer nanocomposites filled with Ag nanoparticles and nickelate ceramic particles [J]. Appl. Surf. Sci., 2019, 481,1160
12 Wang Z, Wang T, Fang M, et al. Enhancement of dielectric and electrical properties in BFN/Ni/PVDF three-phase composites [J]. Compos. Sci. Technol., 2017, 146: 139
13 Jayakumar O D, Abdelhamid E H, Kotari V, et al. Fabrication of flexible and self-standing inorganic-organic three phase magneto-dielectric PVDF based multiferroic nanocomposite films through a small loading of graphene oxide (GO) and Fe3O4 nanoparticles [J]. Dalton Trans. 2015, 44(36): 15872
14 Fakhri P, Mahmood H, Jaleh B, et al. Improved electroactive phase content and dielectric properties of flexible PVDF nanocomposite films filled with Au- and Cu-doped graphene oxide hybrid nanofiller [J]. Synth. Met.. 2016, 220(8): 653
15 Sharma M, Quamara J K, Gaur A. Behaviour of multiphase PVDF in(1-x) PVDF/(x)BaTiO3 nanocomposite films: structural, optical, dielectric and ferroelectric properties [J]. J. Mater. Sci.-Mater. Electron., 2018, 29(13): 10875
16 Yu K, Wang H, Zhou Y, et al. Enhanced dielectric properties of BaTiO3/poly(vinylidene fluoride) nanocomposites for energy storage applications [J]. J. Appl. Phys. 2013, 113(3): 1
17 Silva A B, Arjmand M, Sundararaj U, et al. Novel composites of copper nanowire/PVDF with superior dielectric properties [J]. Polymer, 2014, 55(01): 226
18 Shixin S, Shan X, Shangkun J, et al. A facile strategy to enhance the dielectric and mechanical properties of MWCNTs/PVDF composites with the aid of MMA-co-GMA copolymer [J]. Materials, 2018, 11(3): 347
19 Souliéziakovic C, Nicolaÿ R, Prevoteau A, et al. Dispersible carbon nanotubes. [J]. Chem.-Eur. J., 2014, 20(5): 1210
20 Selvi M, Prabunathan P, Song J K, et al. High dielectric multiwalled carbon nanotube-polybenzoxazine nanocomposites for printed circuit board applications [J]. Appl. Phys. Lett., 2013, 103(15): 539
21 Mizutani K, Kohno H. Multi-walled carbon nanotubes with rectangular or square cross-section [J]. Appl. Phys. Lett., 2016, 108(26): 56
22 Saka C. Overview on the surface functionalization mechanism and determination of surface functional groups of plasma treated carbon nanotubes [J]. Crit. Rev. Anal. Chem., 2017, 48(2): 2642
23 Bian J, Wang G, Zhou X, et al. Preparation and performance of nanocomposites HDPE toughened-reinforced synergetically with functionalized graphene and carbon nano-tubes [J]. Chinese Journal of Materials Research, 2017, 31(02): 136
23 卞军, 王刚, 周醒等. 功能化石墨烯-碳纳米管协同强韧化HDPE纳米复合材料的制备和性能 [J]. 材料研究学报, 2017, 31(02): 136
24 Lin H L, Shen Y J, Wang Z J, et al. Preparation and properties of per functional graphene/elastomer co-operatively tough polypropylene nanocomposites [J]. Chinese Journal of Materials Research, 2016, 30(5): 393
24 蔺海兰, 申亚军, 王正君等. 功能化石墨烯/弹性体协同强韧化聚丙烯纳米复合材料的制备和性能研究 [J]. 材料研究学报, 2016, 30(5): 393
25 Kim H, Johnson J, Chavez L A, et al. Enhanced dielectric properties of three phase dielectric MWCNTs/BaTiO3/PVDF nanocomposites for energy storage using fused deposition modeling 3D printing [J]. Ceram. Int., 2018, 44(1): 1
26 Jin Y, Xia N, Gerhardt R A. Enhanced dielectric properties of polymer matrix composites with BaTiO3 and MWCNT hybrid fillers using simple phase separation [J]. Nano Energy, 2016, 30: 407
27 Rath S K, Dubey S, Kumar G S, et al. Multi-walled CNT-induced phase behaviour of poly(vinylidene fluoride) and its electromechanical properties [J]. J. Mater. Sci., 2014, 49(1): 103
28 Mu Y, Li G. Effects of micron Al2O3 filler on flexural strength and high-temperature microwave absorbing properties of SiCf/BN/SiC composites [J]. Chinese Journal of Materials Research, 2019, 33(11): 206
28 穆阳, 李皓. Al2O3填料对SiCf/BN/SiC复合材料弯曲强度和高温吸波性能的影响 [J]. 材料研究学报, 2019, 33(11): 206
29 Chen W, Nie Y Y, Sun X G, et al. Performance of lithiumion capacitors using pre-lithiated multi-walled carbon nanotube composite anode [J]. Chinese Journal of Materials Research, 2019, 33(5): 371
29 陈玮, 聂艳艳, 孙晓刚等. 预嵌锂多壁碳纳米管的性能 [J]. 材料研究学报, 2019, 33(5): 371
30 Saleh T A. The influence of treatment temperature on the acidity of MWCNT oxidized by HNO3, or a mixture of HNO3/H2SO4 [J]. Appl. Surf. Sci., 2011, 257(17): 7746
31 Marzieh N, Reza T M, Maryam K, et al. Assessment of the optical and dielectric properties of MWCNTs/BaTiO3 nanocomposite ceramics [J]. Ceram. Int., 2018, 44(11): 235
32 Chang S J, Liao W S, Ciou C J, et al. An efficient approach to derive hydroxyl groups on the surface of barium titanate nanoparticles to improve its chemical modification ability [J]. J. Colloid Interface Sci., 2009, 329(2): 300
33 Ji W B, Chu R Q, Xu Z J, et al. Effect of CeO2-doping on properties of SrNa0.5Bi4.5Ti5O18-based high temperature lead-free piezoelectric ceramics [J]. Chinese Journal of Materials Research, 2015, 29(3): 201
33 姬万滨, 初瑞清, 徐志军等. CeO2掺杂对SrNa0.5Bi4.5Ti5O18高温无铅压电陶瓷性能的影响 [J]. 材料研究学报, 2015, 29(3): 201
34 Kappadan S, Gebreab T W, Thomas S, et al. Tetragonal BaTiO3 nanoparticles: An efficient photocatalyst for the degradation of organic pollutants [J]. Mater. Sci. Semicond. Process, 2016, 51: 42
35 Ke K, Potschke P, Jehnichen D, et al. Achieving beta-phase poly(vinylidene fluoride) from melt cooling: Effect of surface functionalized carbon nanotubes [J]. Polymer, 2014, 55(2): 611
36 Maity N, Mandal A, Nandi A K. Interface engineering of ionic liquid integrated graphene in poly(vinylidene fluoride) matrix yielding magnificent improvement in mechanical, electrical and dielectric properties [J]. Polymer, 2015, 65: 154
[1] 潘新元, 蒋津, 任云飞, 刘莉, 李景辉, 张明亚. 热挤压钛/钢复合管的微观组织和性能[J]. 材料研究学报, 2023, 37(9): 713-720.
[2] 毛建军, 富童, 潘虎成, 滕常青, 张伟, 谢东升, 吴璐. AlNbMoZrB系难熔高熵合金的Kr离子辐照损伤行为[J]. 材料研究学报, 2023, 37(9): 641-648.
[3] 幸定琴, 涂坚, 罗森, 周志明. C含量对VCoNi中熵合金微观组织和性能的影响[J]. 材料研究学报, 2023, 37(9): 685-696.
[4] 陈晶晶, 占慧敏, 吴昊, 朱乔粼, 周丹, 李柯. 纳米晶CoNiCrFeMn高熵合金的拉伸力学性能[J]. 材料研究学报, 2023, 37(8): 614-624.
[5] 刘瑞峰, 仙运昌, 赵瑞, 周印梅, 王文先. 钛合金/不锈钢复合板的放电等离子烧结技术制备及其性能[J]. 材料研究学报, 2023, 37(8): 581-589.
[6] 季雨辰, 刘树和, 张天宇, 查成. MXene在锂硫电池中应用的研究进展[J]. 材料研究学报, 2023, 37(7): 481-494.
[7] 秦鹤勇, 李振团, 赵光普, 张文云, 张晓敏. 固溶温度对GH4742合金力学性能及γ' 相的影响[J]. 材料研究学报, 2023, 37(7): 502-510.
[8] 冯叶, 陈志勇, 姜肃猛, 宫骏, 单以银, 刘建荣, 王清江. 一种NiCrAlSiY涂层对Ti65钛合金板材循环氧化和室温力学性能的影响[J]. 材料研究学报, 2023, 37(7): 523-534.
[9] 王伟, 解泽磊, 屈怡珅, 常文娟, 彭怡晴, 金杰, 王快社. Graphene/SiO2 纳米复合材料作为水基润滑添加剂的摩擦学性能[J]. 材料研究学报, 2023, 37(7): 543-553.
[10] 史畅, 杜宇航, 赖利民, 肖思明, 郭宁, 郭胜锋. CrTaTi难熔中熵合金的力学性能和抗氧化性能[J]. 材料研究学报, 2023, 37(6): 443-452.
[11] 雷志国, 文胜平, 黄晖, 张二庆, 熊湘沅, 聂祚仁. 冷轧变形和添加SiAl-2Mg-0.8Cu(-Si)合金的组织和力学性能的影响[J]. 材料研究学报, 2023, 37(6): 463-471.
[12] 张藤心, 王函, 郝亚斌, 张建岗, 孙新阳, 曾尤. 基于界面氢键结构的石墨烯/聚合物复合材料的阻尼性能[J]. 材料研究学报, 2023, 37(6): 401-407.
[13] 邵萌萌, 陈招科, 熊翔, 曾毅, 王铎, 王徐辉. C/C-ZrC-SiC复合材料的Si2+ 离子辐照行为[J]. 材料研究学报, 2023, 37(6): 472-480.
[14] 姜水淼, 明开胜, 郑士建. 晶界偏析以及界面相和纳米晶材料力学性能的调控[J]. 材料研究学报, 2023, 37(5): 321-331.
[15] 陈志鹏, 朱智浩, 宋梦凡, 张爽, 刘田雨, 董闯. 基于Ti-6Al-4V团簇式设计的超高强Ti-Al-V-Mo-Nb-Zr合金[J]. 材料研究学报, 2023, 37(4): 308-314.