Please wait a minute...
材料研究学报  2020, Vol. 34 Issue (11): 829-834    DOI: 10.11901/1005.3093.2020.147
  研究论文 本期目录 | 过刊浏览 |
用电沉积法制备纳米氧化锌/海藻酸钠复合膜
李辉, 潘捷, 曹凯元, 刘慧, 殷洁, 王艺峰()
武汉理工大学材料科学与工程学院 武汉 430070
Preparation of Nano Zinc Oxide/Sodium Alginate Composite Film by Electrodeposition
LI Hui, PAN Jie, CAO Kaiyuan, LIU Hui, YIN Jie, WANG Yifeng()
School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, China
引用本文:

李辉, 潘捷, 曹凯元, 刘慧, 殷洁, 王艺峰. 用电沉积法制备纳米氧化锌/海藻酸钠复合膜[J]. 材料研究学报, 2020, 34(11): 829-834.
Hui LI, Jie PAN, Kaiyuan CAO, Hui LIU, Jie YIN, Yifeng WANG. Preparation of Nano Zinc Oxide/Sodium Alginate Composite Film by Electrodeposition[J]. Chinese Journal of Materials Research, 2020, 34(11): 829-834.

全文: PDF(5828 KB)   HTML
摘要: 

以海藻酸钠为稳定剂用水热法合成纳米氧化锌,再用电沉积法制备了纳米氧化锌/海藻酸钠复合膜。测试纳米氧化锌的粒径和化学结构、观察了复合膜的形貌并测试其性能。结果表明,纳米氧化锌/海藻酸钠复合膜对大肠杆菌和金黄色葡萄球菌有良好的抗菌性能,对亚甲基蓝染料有良好的光催化降解效应。

关键词 无机非金属材料海藻酸钠纳米氧化锌电沉积抗菌光催化降解    
Abstract

Nano zinc oxide was synthesized by hydrothermal method with sodium alginate as stabilizer, and then the composite film of nano zinc oxide/sodium alginate was prepared by electrodeposition. The particle size and chemical structure of ZnO nanoparticles as well as the morphology of the composite film were characterized. The results show that the composite film had good antibacterial properties against Escherichia coli and Staphylococcus aureus, whilst the film had good photocatalytic degradation effect on methylene blue dye.

Key wordsinorganic non-metallic materials    sodium alginate    nano zinc oxide    electrodeposition    antibacterial    photocatalytic degradation
收稿日期: 2020-05-03     
ZTFLH:  TQ341.5  
基金资助:国家自然科学基金(51873167)
作者简介: 李 辉,男,1995年生,硕士生
图1  纳米氧化锌TEM照片
图2  纳米ZnO的紫外-可见吸收光谱和XRD图谱
图3  纳米ZnO/海藻酸钠复合膜的制备
图4  纳米ZnO/海藻酸钠复合薄膜在不同放大倍数下的扫描电镜图
图5  海藻酸钠对照样品和复合膜对大肠杆菌和金黄色葡萄球菌的抑制圈和抑制圈的平均直径
图6  光催化降解亚甲基蓝复合膜的紫外-可见吸收光谱及降解时间复合膜光催化降解亚甲基蓝的速率曲线
1 Bai X Y, Li L L, Liu H Y, et al. Solvothermal synthesis of ZnO nanoparticles and anti-infection application in vivo [J]. ACS. Appl. Mater. Inter., 2015, 7(2): 1308
2 Wang Y, Guo X, Pan R, et al. Electrodeposition of chitosan/gelatin/nanosilver: A new method for constructing biopolymer/nanoparticle composite films with conductivity and antibacterial activity [J]. Mat. Sci. Eng. C., 2015, 53: 222
3 Bi X, Wang H, Ge L, et al. Gold-coated nanostructured carbon tape for rapid electrochemical detection of cadmium in rice with in situ electrodeposition of bismuth in paper-based analytical devices [J]. Sensors. Actuat. B-Chem., 2018, 260: 475
4 Tashkhourian J, Nami-Ana S F, Shamsipu M, et al. Designing a modified electrode based on graphene quantum dot-chitosan application to electrochemical detection of epinephrine [J]. J. Mol. Liq., 2018, 266: 548
5 Shamaeli E, Alizadeh N. Functionalized gold nanoparticle-polypyrrole nanobiocomposite withhigh effective surface area for electrochemical/pH dual stimuli-responsive smart release of insulin [J]. Colloids. Surfaces. B., 2015, 126: 502
6 Beladimousavi S M, Khezri B, Krejcova L, et al. Recoverable bismuth-based microrobots: capture, transport, and on-demand release of heavy metals and an anticancer drug in confined spaces [J]. ACS. Appl. Mater. Inter., 2019, 11(14): 13359
7 Geng Z H, Wang X, Guo X C, et al. Electrodeposition of chitosan based on coordination with metal ions in situ-generated by electrochemical oxidation [J]. J. Mater. Chem. B., 2016, 4: 3331
8 Xu S, Zhang Y, Gao B D, et al. Preparation and properties of composite films of silk fibroin/carboxymethyl chitosan [J]. Chin. J. Mater. Res., 2017, 31(08): 612
8 徐水, 张岩, 高保东等. 再生丝素/羧甲基壳聚糖膜的制备和性能 [J]. 材料研究学报, 2017, 31(08): 612
9 Tang A M, Liu Y, Zhao S. Performance of 3D tissue engineering scaffolds of nanocellulose/high cationic polymers composite [J]. Chin. J. Mater. Res., 2015, 29(01): 1
9 唐爱民, 刘远, 赵姗. 纳米纤维素/阳离子聚合物复合三维组织工程支架的性能 [J]. 材料研究学报, 2015, 29(01): 1
10 Xu W, Wang Z, Liu Y, et al. Carboxymethyl chitosan/gelatin/hyaluronic acid blended-films as epithelia transplanting scaffold for corneal wound healing [J]. Carbohyd. Polym., 2018, 192: 240
11 Yin R, He J, Bai M, et al. Engineering synthetic artificial pancreas using chitosan hydrogels integrated with glucose-responsive microspheres for insulin delivery [J]. Mat. Sci. Eng. C., 2019, 96: 374
12 Sarvaiya J, Agrawal Y K. Chitosan as a suitable nanocarrier material for anti-Alzheimer drug delivery [J]. Int J Biol Macromol., 2015, 72: 454
13 Zhang Z Y, Chen J, Yu J L, et al. Preparation and properties of polydopamine and alginate porous complex scaffolds [J]. Chin. J. Appl. Chem., 2018, 35(06): 665
13 章朱迎, 陈静, 俞佳蕾等. 多巴胺改性海藻酸多孔支架的制备与性能 [J]. 应用化学, 2018, 35(06): 665
14 Feng J J, Ding H, Yang G, et al. Preparation of black-pearl reduced graphene oxide-sodium alginate hydrogel microspheres for adsorbing organic pollutants [J]. J Colloid Interf Sci, 2017, 508: 387
15 Ma X P, Jing Z H, Feng Q, et al. Synthesis and photocatalytic properties of zinc sulfide microspheres [J]. J. Chin. Ceram. Soc., 2014, 43(1): 121
15 马晓品, 景志红, 丰奇等. 硫化锌微米球的合成及其光催化性能 [J]. 硅酸盐学报, 2014, 43(1): 121
16 Luo H L, Xiong G Y, Chen X Q, et al. ZnO nanostructures grown on carbon fibers: morphology control and microwave absorption properties [J]. J. Alloy. Compd., 2014, 593: 7
17 Wang H P, Gong X C, Guo X, et al. Characterization, release, and antioxidant activity of curcumin-loaded sodium alginate/ZnO hydrogel beads [J]. Int. J. Biol. Macromol., 2019, 121: 1118
18 Wang H P, Gong X C, Miao Y L, et al. Preparation and characterization of multilayer films composed of chitosan, sodium alginate and carboxymethyl chitosan-ZnO nanoparticles [J]. Food. Chem., 2019, 283: 397
19 Wang Y F, Zhang Z, Wang M, et al. Direct electrodeposition of carboxymethyl cellulose based on coordination deposition method [J]. Cellulose., 2018, 25(1): 105
20 Liu J L, Wang Y H, Ma J Z, et al. A review on bidirectional analogies between the photocatalysis and antibacterial properties of ZnO [J]. J. Alloy. Compd., 2019, 783: 898
21 Gao D G, Chen C, Ma J Z. Synthesis and properties of PDMDAAC-AGE-MAA/nano-ZnO composite [J]. Polym. Mater. Sci. Eng., 2014, 30(8): 12
21 高党鸽, 陈琛, 马建中. PDMDAAC-AGE-MAA/纳米ZnO复合材料的合成及性能 [J]. 高分子材料科学与工程, 2014, 30(8): 12
22 Ibrahim A A, Kumar R, Umar A, et al. Cauliflower-shaped ZnO nanomaterials for electrochemical sensing and potocatalytic applications [J]. Electrochim Acta, 2016, 222: 463
[1] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[2] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[3] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[4] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.
[5] 李延伟, 罗康, 姚金环. Ni(OH)2 负极材料的十二烷基硫酸钠辅助制备及其储锂性能[J]. 材料研究学报, 2023, 37(6): 453-462.
[6] 余谟鑫, 张书海, 朱博文, 张晨, 王晓婷, 鲍佳敏, 邬翔. N掺杂生物炭的制备及其对Co2+ 的吸附性能[J]. 材料研究学报, 2023, 37(4): 291-300.
[7] 朱明星, 戴中华. SrSc0.5Nb0.5O3 改性BNT基无铅陶瓷的储能特性研究[J]. 材料研究学报, 2023, 37(3): 228-234.
[8] 刘志华, 岳远超, 丘一帆, 卜湘, 阳涛. g-C3N4/Ag/BiOBr复合材料的制备及其光催化还原硝酸盐氮[J]. 材料研究学报, 2023, 37(10): 781-790.
[9] 周毅, 涂强, 米忠华. 制备方法对磷酸盐微晶玻璃结构和性能的影响[J]. 材料研究学报, 2023, 37(10): 739-746.
[10] 谢锋, 郭建峰, 王海涛, 常娜. ZnO/CdS/Ag复合光催化剂的制备及其催化和抗菌性能[J]. 材料研究学报, 2023, 37(1): 10-20.
[11] 余超, 邢广超, 吴郑敏, 董博, 丁军, 邸敬慧, 祝洪喜, 邓承继. 亚微米Al2O3 对重结晶碳化硅的作用机制[J]. 材料研究学报, 2022, 36(9): 679-686.
[12] 方向明, 任帅, 容萍, 刘烁, 高世勇. 自供能Ag/SnSe纳米管红外探测器的制备和性能研究[J]. 材料研究学报, 2022, 36(8): 591-596.
[13] 李福禄, 韩春淼, 高嘉望, 蒋健, 许卉, 李冰. 氧化石墨烯的变温发光[J]. 材料研究学报, 2022, 36(8): 597-601.
[14] 朱晓东, 夏杨雯, 喻强, 杨代雄, 何莉莉, 冯威. Cu掺杂金红石型TiO2 的制备及其光催化性能[J]. 材料研究学报, 2022, 36(8): 635-640.
[15] 熊庭辉, 蔡文汉, 苗雨, 陈晨龙. ZnO纳米棒阵列和薄膜的同步外延生长及其光电化学性能[J]. 材料研究学报, 2022, 36(7): 481-488.