|
|
SPES-C/MIL-53(Al)-SO3H杂化质子交换膜的制备和性能 |
韩光鲁( ),陈哲,蔡立芳,田俊峰,张学波,马环环 |
郑州轻工业大学材料与化学工程学院 郑州 450001 |
|
Preparation and Properties of Hybrid Proton Exchange Membranes of SPES-C/MIL-53(Al)-SO3H |
HAN Guanglu( ),CHEN Zhe,CAI Lifang,TIAN Junfeng,ZHANG Xuebo,MA Huanhuan |
School of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou 450001, China |
引用本文:
韩光鲁,陈哲,蔡立芳,田俊峰,张学波,马环环. SPES-C/MIL-53(Al)-SO3H杂化质子交换膜的制备和性能[J]. 材料研究学报, 2019, 33(9): 691-698.
Guanglu HAN,
Zhe CHEN,
Lifang CAI,
Junfeng TIAN,
Xuebo ZHANG,
Huanhuan MA.
Preparation and Properties of Hybrid Proton Exchange Membranes of SPES-C/MIL-53(Al)-SO3H[J]. Chinese Journal of Materials Research, 2019, 33(9): 691-698.
1 | DuL, YanX, HeG, et al. SPEEK proton exchange membranes modified with silica sulfuric acid nanoparticles [J]. Int. J. Hydrogen Energ., 2012, 37: 11853 | 2 | LiuX, YangZ, ZhangY, et al. Electrospun multifunctional sulfonated carbon nanofibers for design and fabrication of SPEEK composite proton exchange membranes for direct methanol fuel cell application [J]. Int. J. Hydrogen Energ., 2017, 42: 10275 | 3 | SwatiG, VaibhavK. Dramatic improvement in water retention and proton conductivity in electrically aligned functionalized CNT/SPEEK nanohybrid PEM [J]. ACS Appl. Mater. Inter., 2015, 7: 264 | 4 | XuX, LiL, WangH, et al. Solution blown sulfonated poly(ether ether ketone) nanofiber-Nafion composite membranes for proton exchange membrane fuel cells [J]. RSS Adv., 2014, 5: 4934 | 5 | DiZ, XieQ, LiH, et al. Novel composite proton-exchange membrane based on proton-conductive glass powders and sulfonated poly (ether ether ketone) [J]. J. Power Sources, 2015, 273: 688 | 6 | LeeK H, ChoD H, KimY M, et al. Isomeric influences of naphthalene based sulfonated poly(arylene ether sulfone) membranes for energy generation using reverse electrodialysis and polymer electrolyte membrane fuel cell [J]. J. Membr. Sci., 2017, 535: 35 | 7 | YukJ, LeeS, NugrahaA F, et al. Synthesis and characterization of multi-block poly(arylene ether sulfone) membranes with highly sulfonated blocks for use in polymer electrolyte membrane fuel cells [J]. J. Membr. Sci., 2016, 518: 50 | 8 | ParkS G, ChaeK J, LeeM. A sulfonated poly (arylene ether sulfone)/polyimide nanofiber composite proton exchange membrane for microbial electrolysis cell application under the coexistence of diverse competitive cations and protons [J]. J. Membr. Sci., 2017, 540: 165 | 9 | KuoY J, LinH L. Effects of mesoporous fillers on properties of polybenzimidazole composite membranes for hightemperature polymer fuel cells [J]. Int. J. Hydrogen Energ., 2018, 43: 4448 | 10 | YangJ, JiangH, GaoL, et al. Fabrication of crosslinked polybenzimidazole membranes by trifunctional crosslinkers for high temperature proton exchange membrane fuel cells [J]. Int. J. Hydrogen Energ., 2018, 43: 3299 | 11 | SinghaS, JanaT. Effect of composition on the properties of PEM based on polybenzimidazole and poly (vinylidene fluoride) blends [J]. Polymer, 2014, 55: 594-601. | 12 | DasA, GhoshP, GangulyS, et al. Salt-leaching technique for the synthesis of porous poly (2, 5-benzimidazole)(ABPBI) membranes for fuel cell application [J]. J. Appl. Polym. Sci., 2018, 135 | 13 | LeeC H, ParkH B, ChungY S, et al. Water sorption, proton conduction, and methanol permeation properties of sulfonated polyimide membranes cross-linked with N,N-Bis(2-hydroxyethyl)-2-aminoethanesulfonic acid (BES) [J]. Macromolecules, 2006, 39: 755 | 14 | BaratiS, AbdollahiM, KhoshandamB, et al. Highly proton conductive porous membranes based on polybenzimidazole/lignin blends for high temperatures proton exchange membranes: preparation, characterization and morphology-proton conductivity relationship [J]. Int. J. Hydrogen Energ., 2018, 43: 19681 | 15 | ElakkiyaS, ArthanareeswaranG, VenkateshK, et al. Enhancement of fuel cell properties in polyethersulfone and sulfonated poly(ether ether ketone) membranes using metal oxide nanoparticles for proton exchange membrane fuel cell [J]. Int. J. Hydrogen Energ., 2018, 43: 21750 | 16 | WangK, YangL, WeiW, et al. Phosphoric acid doped poly(ether sulfone benzotriazole) for high temperature proton exchange membrane fuel cell applications [J]. J. Membr. Sci., 2018, 549: 23 | 17 | ZhangY X, ZhuX L, JianX G. Preparation of sulfonated poly (phthalazinone ether ketone ketone) and properties of the composite membranes SPPEKK/BPO4 [J]. Chin. J. Mater. Res., 2009, 23(2): 215 | 17 | 张耀霞, 朱秀玲, 蹇锡高. 磺化聚芳醚酮酮的制备及磷酸硼杂化膜的性能 [J]. 材料研究学报,2009, 23(2): 215) | 18 | LiuD, PengJ, LiZ, et al. Improvement in the mechanical properties, proton conductivity, and methanol resistance of highly branched sulfonated poly (arylene ether)/graphene oxide grafted with flexible alkyl sulfonated side chains nanocomposite membranes [J]. J. Power Sources, 2018, 378: 451 | 19 | BaeI, OhK H, YunS H, et al. Asymmetric silica composite polymer electrolyte membrane for water management of fuel cells [J]. J. Membr. Sci., 2017, 542: 52 | 20 | SahinA. The development of SPEEK/PVA/TEOS blend membrane for proton exchange membrane fuel cells [J]. Electrochim. Acta, 2018, 271: 127 | 21 | MunavalliB B, KariduraganavarM Y. Development of novel sulfonic acid functionalized zeolites incorporated composite proton exchange membranes for fuel cell application [J]. Electrochim. Acta, 2019, 296: 294 | 22 | LiuC, FengS, ZhuangZ, et al. Towards basic ionic liquid-based hybrid membranes as hydroxide-conducting electrolytes under low humidity conditions [J]. Chem. Commun., 2015, 51: 12629 | 23 | PonomarevaV G, KovalenkoK A, ChupakhinA P, et al. Imparting high proton conductivity to a metal-organic framework material by controlled acid impregnation [J]. J. Am. Chem. Soc., 2012, 134: 15640 | 24 | DybtsevD N, PonomarevaV G, AlievS B, et al. High proton conductivity and spectroscopic investigations of metal-organic framework materials impregnated by strong acids [J]. ACS Appl. Mater. Inter., 2014, 6: 5161 | 25 | LiangX Q, ZhangF, FengW, et al. From metal-organic framework (MOF) to MOF-polymer composite membrane: enhancement of low-humidity proton conductivity [J]. Chem. Sci., 2013, 4: 983 | 26 | RuC Y, LiZ H, ZhaoC J, et al. Enhanced proton conductivity of sulfonated hybrid poly(arylene ether ketone) membranes by incorporating an amino-sulfo bifunctionalized metal-organic framework for direct methanol fuel cells [J]. ACS Appl. Mater. Inter., 2018, 10: 7963 | 27 | NiluroutuN, PichaimuthuK, SarmahS, et al. A copper–trimesic acid metal-organic framework incorporated sulfonated poly(ether ether ketone) based polymer electrolyte membrane for direct methanol fuel cells [J]. New J. Chem., 2018, 42: 16758 | 28 | AtorngitjawatP, KleinR J, RuntJ. Dynamics of sulfonated polystyrene copolymers using broadband dielectric spectroscopy [J]. Macromolecules, 2006. 39(5): 1815 | 29 | GoestenM.G., et al., Sulfation of metal–organic frameworks: opportunities for acid catalysis and proton conductivity [J]. J. Catal., 2011, 281(1): 177 | 30 | HouS L, LuH G, GuY F, et al. Conversion of water-insoluble aluminum sources into metal-organic framework MIL-53(Al) and its adsorptive removal of roxarsone [J]. Chin. J. Mater. Res., 2017, 31(7): 495 | 30 | 侯书亮, 卢慧宫, 顾逸凡等. 水不溶性铝源合成金属有机骨架MIL-53(Al)及其对洛克沙胂的吸附 [J]. 材料研究学报, 2017, 31(7): 495) | 31 | ZhangG, LiJ, WangN, et al. Enhanced flux of polydimethylsiloxane membrane for ethanol permselective pervaporation via incorporation of MIL-53 particles [J]. J. Membr. Sci., 2015, 492: 322 | 32 | ParisaS, MehranJ, SaeedP, et al. Novel proton exchange membranes based on proton conductive sulfonated PAMPS/PSSA-TiO2 hybrid nanoparticles and sulfonated poly (ether ether ketone) for PEMFC [J]. Int. J. Hydrogen Energ., 2019, 44: 3099 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|