Please wait a minute...
材料研究学报  2019, Vol. 33 Issue (9): 691-698    DOI: 10.11901/1005.3093.2019.140
  研究论文 本期目录 | 过刊浏览 |
SPES-C/MIL-53(Al)-SO3H杂化质子交换膜的制备和性能
韩光鲁(),陈哲,蔡立芳,田俊峰,张学波,马环环
郑州轻工业大学材料与化学工程学院 郑州 450001
Preparation and Properties of Hybrid Proton Exchange Membranes of SPES-C/MIL-53(Al)-SO3H
HAN Guanglu(),CHEN Zhe,CAI Lifang,TIAN Junfeng,ZHANG Xuebo,MA Huanhuan
School of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou 450001, China
引用本文:

韩光鲁,陈哲,蔡立芳,田俊峰,张学波,马环环. SPES-C/MIL-53(Al)-SO3H杂化质子交换膜的制备和性能[J]. 材料研究学报, 2019, 33(9): 691-698.
Guanglu HAN, Zhe CHEN, Lifang CAI, Junfeng TIAN, Xuebo ZHANG, Huanhuan MA. Preparation and Properties of Hybrid Proton Exchange Membranes of SPES-C/MIL-53(Al)-SO3H[J]. Chinese Journal of Materials Research, 2019, 33(9): 691-698.

全文: PDF(5764 KB)   HTML
摘要: 

用水热合成法制备MIL-53(Al),然后用后磺化法在其笼状结构中引入磺酸基团得到MIL-53(Al)-SO3H纳米级金属有机框架(MOF)多孔晶体材料,最后将MIL-53(Al)-SO3H掺杂到磺化酚酞侧基聚芳醚砜(SPES-C)高分子相中制备出一系列SPES-C/MIL-53(Al)-SO3H燃料电池用杂化质子交换膜(PEM)。扫描电镜观测结果表明,杂化质子交换膜内没有缺陷,MIL-53(Al)-SO3H在膜内分散均匀且两相的相容性好。热重分析结果证实,杂化膜具有优良的热稳定性。MIL-53(Al)-SO3H的加入,提高了杂化膜的吸水率、尺寸稳定性和质子传导率。在温度为80℃时填充量为5%(质量分数)的杂化膜其M-5的质子传导率达到0.15 S·cm-1,比纯SPES-C膜提高了32.5%且优于商用Nafion膜的质子传导率(0.134 S·cm-1)。

关键词 复合材料质子交换膜磺化酚酞侧基聚芳醚砜磺化金属-有机框架    
Abstract

MIL-53(Al) was synthesized through hydrothermal synthesis, then sulfonic groups were introduced into MIL-53(Al) cages by sulfonation reaction to obtain MIL-53(Al)-SO3H with proton conduction property. The post-synthetic MIL-53(Al)-SO3H was incorporated into sulfonated polyarylethersulfone with cardo (SPES-C) polymer matrix to form hybrid PEMs. SEM results show that MIL-53(Al)-SO3H dispersed uniformly in SPES-C phase and no obvious interfacial defects in membranes could be observed. The TGA analysis confirmed that the membranes of PEMs have excellent thermal stability. The water uptake was enhanced with embedding MIL-53(Al)-SO3H and it presented positive correlation with composition. The incorporation of MIL-53(Al)-SO3H also inhibited the swelling ratio, indicating the excellent dimensional stability of the as-prepared hybrid PEMs. The hybrid PEMs also showed encouraging proton conductivity. The proton conductivity of the hybrid PEMs with incorporation amount of 5% (in mass fraction) MIL-53(Al)-SO3H reached to 0.15 S·cm-1, which was 32.5% higher than that of the pristine SPES-C membrane, and exceeded that of the ordinary commercial Nafion membrane (0.134 S·cm-1).

Key wordscomposite    proton exchange membrane    sulfonated polyarylethersulfone    sulfonated MOF
收稿日期: 2019-03-06     
ZTFLH:  TB 332  
基金资助:国家自然科学基金(21606211);河南省科技计划基础与前沿技术研究计划(152300410127);郑州轻工业学院博士科研基金(2014BSJJ056)
作者简介: 韩光鲁,男,1985年生,博士
图1  MIL-53(Al)和MIL-53(Al)-SO3H的红外光谱
图2  MIL-53(Al)和MIL-53(Al)-SO3H的XRD谱
图3  MIL-53(Al) 和MIL-53(Al)-SO3H 的SEM图
图4  MIL-53(Al)-SO3H和MIL-53(Al)的粒度分布
图5  SPES-C、M-1、M-3、M-5的表面和截面SEM照片以及M-5截面Al元素的EDS谱
图6  SPES-C, M-1,M-3和M-5的TGA曲线
图7  SPES-C膜和杂化膜的力学性能
图8  SPES-C膜和杂化膜在不同温度下的吸水率
图9  SPES-C膜和杂化膜的空穴半径和自由体积分数
图10  SPES-C膜和杂化膜在不同温度下的溶胀度
图11  SPES-C膜和杂化膜在不同温度下的质子传导率
1 DuL, YanX, HeG, et al. SPEEK proton exchange membranes modified with silica sulfuric acid nanoparticles [J]. Int. J. Hydrogen Energ., 2012, 37: 11853
2 LiuX, YangZ, ZhangY, et al. Electrospun multifunctional sulfonated carbon nanofibers for design and fabrication of SPEEK composite proton exchange membranes for direct methanol fuel cell application [J]. Int. J. Hydrogen Energ., 2017, 42: 10275
3 SwatiG, VaibhavK. Dramatic improvement in water retention and proton conductivity in electrically aligned functionalized CNT/SPEEK nanohybrid PEM [J]. ACS Appl. Mater. Inter., 2015, 7: 264
4 XuX, LiL, WangH, et al. Solution blown sulfonated poly(ether ether ketone) nanofiber-Nafion composite membranes for proton exchange membrane fuel cells [J]. RSS Adv., 2014, 5: 4934
5 DiZ, XieQ, LiH, et al. Novel composite proton-exchange membrane based on proton-conductive glass powders and sulfonated poly (ether ether ketone) [J]. J. Power Sources, 2015, 273: 688
6 LeeK H, ChoD H, KimY M, et al. Isomeric influences of naphthalene based sulfonated poly(arylene ether sulfone) membranes for energy generation using reverse electrodialysis and polymer electrolyte membrane fuel cell [J]. J. Membr. Sci., 2017, 535: 35
7 YukJ, LeeS, NugrahaA F, et al. Synthesis and characterization of multi-block poly(arylene ether sulfone) membranes with highly sulfonated blocks for use in polymer electrolyte membrane fuel cells [J]. J. Membr. Sci., 2016, 518: 50
8 ParkS G, ChaeK J, LeeM. A sulfonated poly (arylene ether sulfone)/polyimide nanofiber composite proton exchange membrane for microbial electrolysis cell application under the coexistence of diverse competitive cations and protons [J]. J. Membr. Sci., 2017, 540: 165
9 KuoY J, LinH L. Effects of mesoporous fillers on properties of polybenzimidazole composite membranes for hightemperature polymer fuel cells [J]. Int. J. Hydrogen Energ., 2018, 43: 4448
10 YangJ, JiangH, GaoL, et al. Fabrication of crosslinked polybenzimidazole membranes by trifunctional crosslinkers for high temperature proton exchange membrane fuel cells [J]. Int. J. Hydrogen Energ., 2018, 43: 3299
11 SinghaS, JanaT. Effect of composition on the properties of PEM based on polybenzimidazole and poly (vinylidene fluoride) blends [J]. Polymer, 2014, 55: 594-601.
12 DasA, GhoshP, GangulyS, et al. Salt-leaching technique for the synthesis of porous poly (2, 5-benzimidazole)(ABPBI) membranes for fuel cell application [J]. J. Appl. Polym. Sci., 2018, 135
13 LeeC H, ParkH B, ChungY S, et al. Water sorption, proton conduction, and methanol permeation properties of sulfonated polyimide membranes cross-linked with N,N-Bis(2-hydroxyethyl)-2-aminoethanesulfonic acid (BES) [J]. Macromolecules, 2006, 39: 755
14 BaratiS, AbdollahiM, KhoshandamB, et al. Highly proton conductive porous membranes based on polybenzimidazole/lignin blends for high temperatures proton exchange membranes: preparation, characterization and morphology-proton conductivity relationship [J]. Int. J. Hydrogen Energ., 2018, 43: 19681
15 ElakkiyaS, ArthanareeswaranG, VenkateshK, et al. Enhancement of fuel cell properties in polyethersulfone and sulfonated poly(ether ether ketone) membranes using metal oxide nanoparticles for proton exchange membrane fuel cell [J]. Int. J. Hydrogen Energ., 2018, 43: 21750
16 WangK, YangL, WeiW, et al. Phosphoric acid doped poly(ether sulfone benzotriazole) for high temperature proton exchange membrane fuel cell applications [J]. J. Membr. Sci., 2018, 549: 23
17 ZhangY X, ZhuX L, JianX G. Preparation of sulfonated poly (phthalazinone ether ketone ketone) and properties of the composite membranes SPPEKK/BPO4 [J]. Chin. J. Mater. Res., 2009, 23(2): 215
17 张耀霞, 朱秀玲, 蹇锡高. 磺化聚芳醚酮酮的制备及磷酸硼杂化膜的性能 [J]. 材料研究学报,2009, 23(2): 215)
18 LiuD, PengJ, LiZ, et al. Improvement in the mechanical properties, proton conductivity, and methanol resistance of highly branched sulfonated poly (arylene ether)/graphene oxide grafted with flexible alkyl sulfonated side chains nanocomposite membranes [J]. J. Power Sources, 2018, 378: 451
19 BaeI, OhK H, YunS H, et al. Asymmetric silica composite polymer electrolyte membrane for water management of fuel cells [J]. J. Membr. Sci., 2017, 542: 52
20 SahinA. The development of SPEEK/PVA/TEOS blend membrane for proton exchange membrane fuel cells [J]. Electrochim. Acta, 2018, 271: 127
21 MunavalliB B, KariduraganavarM Y. Development of novel sulfonic acid functionalized zeolites incorporated composite proton exchange membranes for fuel cell application [J]. Electrochim. Acta, 2019, 296: 294
22 LiuC, FengS, ZhuangZ, et al. Towards basic ionic liquid-based hybrid membranes as hydroxide-conducting electrolytes under low humidity conditions [J]. Chem. Commun., 2015, 51: 12629
23 PonomarevaV G, KovalenkoK A, ChupakhinA P, et al. Imparting high proton conductivity to a metal-organic framework material by controlled acid impregnation [J]. J. Am. Chem. Soc., 2012, 134: 15640
24 DybtsevD N, PonomarevaV G, AlievS B, et al. High proton conductivity and spectroscopic investigations of metal-organic framework materials impregnated by strong acids [J]. ACS Appl. Mater. Inter., 2014, 6: 5161
25 LiangX Q, ZhangF, FengW, et al. From metal-organic framework (MOF) to MOF-polymer composite membrane: enhancement of low-humidity proton conductivity [J]. Chem. Sci., 2013, 4: 983
26 RuC Y, LiZ H, ZhaoC J, et al. Enhanced proton conductivity of sulfonated hybrid poly(arylene ether ketone) membranes by incorporating an amino-sulfo bifunctionalized metal-organic framework for direct methanol fuel cells [J]. ACS Appl. Mater. Inter., 2018, 10: 7963
27 NiluroutuN, PichaimuthuK, SarmahS, et al. A copper–trimesic acid metal-organic framework incorporated sulfonated poly(ether ether ketone) based polymer electrolyte membrane for direct methanol fuel cells [J]. New J. Chem., 2018, 42: 16758
28 AtorngitjawatP, KleinR J, RuntJ. Dynamics of sulfonated polystyrene copolymers using broadband dielectric spectroscopy [J]. Macromolecules, 2006. 39(5): 1815
29 GoestenM.G., et al., Sulfation of metal–organic frameworks: opportunities for acid catalysis and proton conductivity [J]. J. Catal., 2011, 281(1): 177
30 HouS L, LuH G, GuY F, et al. Conversion of water-insoluble aluminum sources into metal-organic framework MIL-53(Al) and its adsorptive removal of roxarsone [J]. Chin. J. Mater. Res., 2017, 31(7): 495
30 侯书亮, 卢慧宫, 顾逸凡等. 水不溶性铝源合成金属有机骨架MIL-53(Al)及其对洛克沙胂的吸附 [J]. 材料研究学报, 2017, 31(7): 495)
31 ZhangG, LiJ, WangN, et al. Enhanced flux of polydimethylsiloxane membrane for ethanol permselective pervaporation via incorporation of MIL-53 particles [J]. J. Membr. Sci., 2015, 492: 322
32 ParisaS, MehranJ, SaeedP, et al. Novel proton exchange membranes based on proton conductive sulfonated PAMPS/PSSA-TiO2 hybrid nanoparticles and sulfonated poly (ether ether ketone) for PEMFC [J]. Int. J. Hydrogen Energ., 2019, 44: 3099
[1] 潘新元, 蒋津, 任云飞, 刘莉, 李景辉, 张明亚. 热挤压钛/钢复合管的微观组织和性能[J]. 材料研究学报, 2023, 37(9): 713-720.
[2] 刘瑞峰, 仙运昌, 赵瑞, 周印梅, 王文先. 钛合金/不锈钢复合板的放电等离子烧结技术制备及其性能[J]. 材料研究学报, 2023, 37(8): 581-589.
[3] 季雨辰, 刘树和, 张天宇, 查成. MXene在锂硫电池中应用的研究进展[J]. 材料研究学报, 2023, 37(7): 481-494.
[4] 王伟, 解泽磊, 屈怡珅, 常文娟, 彭怡晴, 金杰, 王快社. Graphene/SiO2 纳米复合材料作为水基润滑添加剂的摩擦学性能[J]. 材料研究学报, 2023, 37(7): 543-553.
[5] 张藤心, 王函, 郝亚斌, 张建岗, 孙新阳, 曾尤. 基于界面氢键结构的石墨烯/聚合物复合材料的阻尼性能[J]. 材料研究学报, 2023, 37(6): 401-407.
[6] 邵萌萌, 陈招科, 熊翔, 曾毅, 王铎, 王徐辉. C/C-ZrC-SiC复合材料的Si2+ 离子辐照行为[J]. 材料研究学报, 2023, 37(6): 472-480.
[7] 张锦中, 刘晓云, 杨健茂, 周剑锋, 查刘生. 温度响应性双面纳米纤维的制备和性能[J]. 材料研究学报, 2023, 37(4): 248-256.
[8] 王刚, 杜雷雷, 缪自强, 钱凯成, 杜向博文, 邓泽婷, 李仁宏. 聚多巴胺改性碳纤维增强尼龙6复合材料的界面性能[J]. 材料研究学报, 2023, 37(3): 203-210.
[9] 林师峰, 徐东安, 庄艳歆, 张海峰, 朱正旺. TiZr基非晶/TC21双层复合材料的制备和力学性能[J]. 材料研究学报, 2023, 37(3): 193-202.
[10] 苗琪, 左孝青, 周芸, 王应武, 郭路, 王坦, 黄蓓. 304不锈钢纤维/ZL104铝合金复合泡沫的孔结构、力学、吸声性能及其机理[J]. 材料研究学报, 2023, 37(3): 175-183.
[11] 张开银, 王秋玲, 向军. FeCo/SnO2 复合纳米纤维的制备及其吸波性能[J]. 材料研究学报, 2023, 37(2): 102-110.
[12] 周聪, 昝宇宁, 王东, 王全兆, 肖伯律, 马宗义. (Al11La3+Al2O3)/Al复合材料的高温性能及其强化机制[J]. 材料研究学报, 2023, 37(2): 81-88.
[13] 罗昱, 陈秋云, 薛丽红, 张五星, 严有为. 钠离子电池双层碳包覆Na3V2(PO4)3 正极材料的超声辅助溶液燃烧合成及其电化学性能[J]. 材料研究学报, 2023, 37(2): 129-135.
[14] 刘志华, 岳远超, 丘一帆, 卜湘, 阳涛. g-C3N4/Ag/BiOBr复合材料的制备及其光催化还原硝酸盐氮[J]. 材料研究学报, 2023, 37(10): 781-790.
[15] 谢东航, 潘冉, 朱士泽, 王东, 刘振宇, 昝宇宁, 肖伯律, 马宗义. 增强颗粒尺寸对B4C/Al-Zn-Mg-Cu复合材料微观组织及力学性能的影响[J]. 材料研究学报, 2023, 37(10): 731-738.