Please wait a minute...
材料研究学报  2019, Vol. 33 Issue (2): 95-102    DOI: 10.11901/1005.3093.2018.397
  本期目录 | 过刊浏览 |
PBT/氧化石墨烯纳米复合材料的制备及热处理
肖文强1,黄欢1,陈林1,严磊1,卞军1(),鲁云2
1. 西华大学材料科学与工程学院 汽车高性能材料及成形技术四川省高校重点实验室 成都 610039
2. 千叶大学科学与工程研究生学院 千叶 263-8522 日本
Preparation and Heat Treatment of Nanocomposites of PBT/Graphene Oxide
Wenqiang XIAO1,Huan HUANG1,Lin CHEN1,Lei YAN1,Jun BIAN1(),Yun LU2
1. Key Laboratory of Automobile High Performance Materials & Forming Technology in Sichuan Provincial Universities, School of Materials Science and Engineering, Xi-Hua University, Chengdu 610039, China
2. Department of Mechanical Engineering, Graduate School of Science and Engineering, Graduate School of Science and Engineering, Chiba University, Chiba 262-8522, Japan
引用本文:

肖文强,黄欢,陈林,严磊,卞军,鲁云. PBT/氧化石墨烯纳米复合材料的制备及热处理[J]. 材料研究学报, 2019, 33(2): 95-102.
Wenqiang XIAO, Huan HUANG, Lin CHEN, Lei YAN, Jun BIAN, Yun LU. Preparation and Heat Treatment of Nanocomposites of PBT/Graphene Oxide[J]. Chinese Journal of Materials Research, 2019, 33(2): 95-102.

全文: PDF(6919 KB)   HTML
摘要: 

先用Hummer法合成氧化石墨烯(GO),然后用熔融共混法制备了不同GO含量的聚对苯二甲酸丁二醇酯(PBT)纳米复合材料(PBT/GO)。随着GO含量的提高PBT/GO纳米复合材料的拉伸强度和冲击强度都先提高后降低,GO的含量为0.5%的材料性能最佳。将GO含量为0.5%的PBT/GO纳米复合材料在不同温度(150、180和200℃)热处理不同时间(30、60和90 min),研究了热处理对其结构和性能的影响。结果表明,随着热处理温度的提高PBT/GO纳米复合材料的拉伸强度和冲击强度最高达63.2 MPa和11.6 kJ/m2,比热处理前分别提高了36.1%和59.3%。而随着热处理时间的延长其拉伸强度和冲击强度最高分别为62.3 MPa和11.0 kJ/m2,分别提高了34.2%和51.9%。DSC分析结果表明,提高热处理温度和延长热处理时间都能提高复合材料的结晶度,结晶度比热处理前最多分别提高了11.4%和8.6%,温度对结晶度的影响更甚。XRD测试结果表明,热处理并不改变复合材料的晶型结构,只影响其结晶度。导热性能测试结果表明,复合料的结晶度越高则导热性能越好。提高热处理温度,复合材料在50℃和100℃的热导率最高分别为0.49 W/(m·K)和0.42 W/(m·K),比热处理前分别提高了24.1%和18.6%;延长热处理时间,复合材料在50℃和100℃的热导率最高分别为0.46 W/(m·K)和0.37 W/(m·K),比热处理前分别提高了14.6%和5.9%,热处理温度对导热性能的影响更显著。

关键词 复合材料聚对苯二甲酸丁二醇酯(PBT)氧化石墨烯热处理导热性能    
Abstract

The graphene oxide (GO) was firstly synthesized by the Hummer method, and then the nanocomposites of PBT/GO with different GO contents were prepared by melt blending. The mechanical properties of the PBT/GO-nanocomposites were tested. Results show that the tensile strength and impact strength of the nanocomposites increased first and then decreased with the increase of GO content, however the PBT/GO-nanocomposite with 0.5% GO exhibits the best mechanical performance. The PBT/GO nanocomposite with 0.5% GO was selected for further heat-treatment at various temperatures (150oC, 180oC and 200oC) for differnet times (30 min, 60 min and 90 min), then the effect of heat-treating on its structure and properties were investigated. With the increase of heat treatment temperature the tensile strength and impact strength could reach as high as 63.2 MPa and 11.6 kJ/m2, which increased by 36.1% and 59.3%, respectively compared with those of untreated ones. With the prolongation of heat treatment time, the tensile strength and impact strength of the composite could reach up to 62.3 MPa and 11.0 kJ/m2, which increased by 34.2% and 51.9%, respectively. DSC tests show that with the increasing heat treatment temperature and time the degree of crystallinity of the composites was enhanced by 11.4% and 8.6% respectively, however the heating temperature has much strong influence on the degree of crystallinity rather than holding time. XRD results show that heat treatment did not change the crystallographic structure of the composite. With the increasing heat treatment temperature, the thermal conductivity of the composite was 0.49 W/(m·K) and 0.42 W/(m·K) measured at 50oC and 100oC respectively. Correspondingly, which increased by 24.1% and 18.6%, respectively in comparison with those of the non-heat treated ones. With the increasing heat treatment time, the thermal conductivity of the composite could rach up to 0.46 W/(m·K) and 0.37 W/(m·K) at 50oC and 100oC, which increased by 14.6% and 5.9% in comparison to those of the non-heat treated ones. Besides, the heat treatment temperature presents much obvious influence on the enhancement of the thermal conductivity of the composite.

Key wordscomposite    poly butylene terephthalate    graphene oxide    heat treatment    thermal conduc-tivity
收稿日期: 2018-06-20     
ZTFLH:  TQ325.1  
基金资助:国家教育部春晖计划合作项目(Z2017070);汽车高性能材料及成形技术四川省高校重点实验室开放研究基金(SZjj2017-066);四川省教育厅科研项目(17ZB0422);国家级大学生创新创业训练计划项目(201810623007);国家级大学生创新创业训练计划项目(201710623098);四川省青年科技创新研究团队项目(19CXTD0050)
作者简介: 肖文强,男,1992年生,硕士生
图1  NGP和GO的红外光谱
图2  NGP和GO的XRD衍射图谱
图3  填料含量不同的PBT/GO纳米复合材料的力学性能
图4  GO的制备和GO与PBT的反应机理图
图5  纯PBT和PBT/GO纳米复合材料的FTIR谱
图6  PBT/GO纳米复合材料的SEM照片
图7  处理温度热和时间对PBT/GO纳米复合材料力学性能的影响
图8  热处理后纳米复合材料的DSC曲线
图9  热处理后PBT/GO纳米复合材料的结晶度
图10  热处理后纳米复合材料的XRD衍射图谱

Heat treatment

condition

(011)(010)(100)(104)
Untreated28.672.068.518.2
150℃31.086.286.320.6
180℃30.373.588.223.1
200℃33.088.492.324.2
表1  部分晶面衍射峰相对强度
图11  热处理后PBT/GO纳米复合材料的热导率
[1] Hage E, Hale W, Keskkula H, et al. Impact modification of poly(butylene terephthalate) by ABS materials [J]. Polymer, 1997, 38(13): 3237
[2] Wahrmund D C, Paul D R, Barlow J W. Polyester-polycarbonate blends. I. Poly(butylene terephthalate) [J]. Appl. J. Polym. Sci. 1978, 22(8): 2155
[3] Hong J S, Namkung H, Ahn K H, et al. The role of organically modified layered silicate in the breakup and coalescence of droplets in PBT/PE blends [J]. Polymer, 2006, 47(11): 3967
[4] Xiao J F, Hu Y, Wang Z Z, et al. Preparation and characterization of poly(butylene terephthalate) nanocomposites from thermally stable organic-modified montmorillonite [J]. Eur. Polym. J. 2005, 41 (5): 1030
[5] Wei G. Toughening and reinforcing modification, structure and properties of poly (butylene terephthalate) [D]. Chengdu: Sichuan University, 2004
[5] (魏 刚. 聚对苯二甲酸丁二醇酯(PBT)的增韧增强改性及其结构与性能研究 [D]. 成都: 四川大学, 2004)
[6] Bian J, He F X, Lin H L, et al. Effect of epoxidized EPDM on morphologies and mechanical properties of PBT/LLDPE blends [J]. China Plastics Industry, 2014, 42(8): 31
[6] (卞 军, 何飞雄, 蔺海兰等.环氧化EPDM对PBT/LLDPE共混体系的微观形态及力学性能影响研究 [J]. 塑料工业, 2014, 42(8): 31)
[7] Bian J, Lin H L, He F Xet al. Effect of epoxidized EPDM on the crystallinity and thermal properties of PBT/LLDPE blends [J]. China Plastics Industry, 2014, 42(12): 64
[7] (卞 军, 蔺海兰, 何飞雄等. 环氧化EPDM对PBT/LLDPE共混体系的结晶及热学性能影响研究 [J].塑料工业, 2014, 42(12): 64)
[8] Lin H L, Bian J, Zhou Q, et al. PBT composites modified by functionalized nano- SiO2 [J]. Modern Plastics Processing And Applications, 2015, 27(1): 9
[8] (蔺海兰, 卞 军, 周 强等. 功能化纳米SiO2改性PBT复合材料的研究 [J]. 现代塑料加工应用, 2015, 27(1): 9)
[9] Novoselov K S, Geim A K, Morozov S V, et al. Electric field effect in atomically thin carbon films [J]. Science, 2004, 306(5696): 666
[10] Kroto H W, Heath J R, Obrien S C, et al. C60: Buckmisnterfulleren [J]. Nature, 1985, 318(6042): 162
[11] Paredes J I, Villar-Rodil S, Martínez-Alonso A, et al. Graphene oxide dispersions in organic solvents [J]. Langmuir the Acs Journal of Surfaces & Colloids, 2008, 24(19): 10560
[12] Zhou X, Hu B, Xiao W Q, et al. Preparation and properties of composites of polyvinyl alcohol grafted graphene oxide/thermoplastic polyurethane [J]. Chinese Journal of Materials Research, 2017, 31(11): 874
[12] (周 醒, 胡 斌, 肖文强等. 氧化石墨烯接枝聚乙烯醇/热塑性聚氨酯复合材料的制备和性能 [J]. 材料研究学报, 2017, 31(11): 874)
[13] Bian J, Lin H L, He F X, et al. Processing and assessment of high-performance poly(butylene terephthalate) nanocomposites reinforced with microwave exfoliated graphite oxide nanosheets [J]. Eur. Polym. J. 2013, 49 (6): 1406
[14] Fabbri P, Bassoli E, Bon S B, et al. Preparation and characterization of poly (butylene terephthalate)/graphene composites by in-situ polymerization of cyclic butylene terephthalate [J]. Polymer, 2012, 53:897
[15] Wu C S, Liao H T. Preparation and characterization of functionalized graphite/poly(butylene terephthalate) composites [J]. Appl. J. Polym. Sci., 2015, 72(7): 1799
[16] Li M, Jeong Y G. Influences of exfoliated graphite on structures, thermal stability, mechanical modulus, and electrical resistivity of poly(butylene terephthalate)[J]. Appl. J. Polym. Sci. 2012, 125(S1): E532
[17] Hummers W S, Offeman R E. Preparation of graphitic oxide [J]. JACS. 1958, 80 (6): 1339
[18] Bian J, Wei X W, Lin H L, et al. Comparative study on the exfoliated expanded graphite nanosheet-PES composites prepared via different compounding method [J]. Appl. J. Polym. Sci.2012, 124 (5): 3547
[19] Chen X Q. Crystallization and melting behaviuors Of PBT and it's nanocomposites and the self-assembly behaviors of block copolymer studied by tapping-mode atomic force microscopy [D]. Guangzhou: South China University of Technology, 2011
[19] (陈学琴. PBT及其纳米复合体系的结晶和熔融行为研究及嵌段共聚自组装行为的TMAFM研究 [D]. 广州: 华南理工大学, 2011)
[20] Chu J R, Zhang X H, Xu C X. Research and application of thermal conducting polymer[J]. Polymer Materials Science And Engineering, 2000, 16(4): 17
[20] (储九荣, 张晓辉, 徐传骧. 导热高分子材料的研究与应用 [J]. 高分子材料科学与工程, 2000, 16(4): 17)
[21] Li G L. Study on Preparation and Application of Flame Retarded Thermal Conductive Polybutylene Terephalate [D]. Guangzhou: South China University of Technology, 2011
[21] (李国林. 导热阻燃聚对苯二甲酸丁二醇酯的制备与性能研究[D]. 广州: 华南理工大学, 2011)
[1] 潘新元, 蒋津, 任云飞, 刘莉, 李景辉, 张明亚. 热挤压钛/钢复合管的微观组织和性能[J]. 材料研究学报, 2023, 37(9): 713-720.
[2] 刘继浩, 迟宏宵, 武会宾, 马党参, 周健, 徐辉霞. 喷射成形M3高速钢热处理过程中组织的演变和硬度偏低问题[J]. 材料研究学报, 2023, 37(8): 625-632.
[3] 刘瑞峰, 仙运昌, 赵瑞, 周印梅, 王文先. 钛合金/不锈钢复合板的放电等离子烧结技术制备及其性能[J]. 材料研究学报, 2023, 37(8): 581-589.
[4] 季雨辰, 刘树和, 张天宇, 查成. MXene在锂硫电池中应用的研究进展[J]. 材料研究学报, 2023, 37(7): 481-494.
[5] 王伟, 解泽磊, 屈怡珅, 常文娟, 彭怡晴, 金杰, 王快社. Graphene/SiO2 纳米复合材料作为水基润滑添加剂的摩擦学性能[J]. 材料研究学报, 2023, 37(7): 543-553.
[6] 张藤心, 王函, 郝亚斌, 张建岗, 孙新阳, 曾尤. 基于界面氢键结构的石墨烯/聚合物复合材料的阻尼性能[J]. 材料研究学报, 2023, 37(6): 401-407.
[7] 邵萌萌, 陈招科, 熊翔, 曾毅, 王铎, 王徐辉. C/C-ZrC-SiC复合材料的Si2+ 离子辐照行为[J]. 材料研究学报, 2023, 37(6): 472-480.
[8] 张锦中, 刘晓云, 杨健茂, 周剑锋, 查刘生. 温度响应性双面纳米纤维的制备和性能[J]. 材料研究学报, 2023, 37(4): 248-256.
[9] 王刚, 杜雷雷, 缪自强, 钱凯成, 杜向博文, 邓泽婷, 李仁宏. 聚多巴胺改性碳纤维增强尼龙6复合材料的界面性能[J]. 材料研究学报, 2023, 37(3): 203-210.
[10] 林师峰, 徐东安, 庄艳歆, 张海峰, 朱正旺. TiZr基非晶/TC21双层复合材料的制备和力学性能[J]. 材料研究学报, 2023, 37(3): 193-202.
[11] 苗琪, 左孝青, 周芸, 王应武, 郭路, 王坦, 黄蓓. 304不锈钢纤维/ZL104铝合金复合泡沫的孔结构、力学、吸声性能及其机理[J]. 材料研究学报, 2023, 37(3): 175-183.
[12] 赵云梅, 赵洪泽, 吴杰, 田晓生, 徐磊. 热处理对粉末冶金Inconel 718合金TIG焊接的组织和性能的影响[J]. 材料研究学报, 2023, 37(3): 184-192.
[13] 张开银, 王秋玲, 向军. FeCo/SnO2 复合纳米纤维的制备及其吸波性能[J]. 材料研究学报, 2023, 37(2): 102-110.
[14] 周聪, 昝宇宁, 王东, 王全兆, 肖伯律, 马宗义. (Al11La3+Al2O3)/Al复合材料的高温性能及其强化机制[J]. 材料研究学报, 2023, 37(2): 81-88.
[15] 罗昱, 陈秋云, 薛丽红, 张五星, 严有为. 钠离子电池双层碳包覆Na3V2(PO4)3 正极材料的超声辅助溶液燃烧合成及其电化学性能[J]. 材料研究学报, 2023, 37(2): 129-135.