Please wait a minute...
材料研究学报  2019, Vol. 33 Issue (11): 848-856    DOI: 10.11901/1005.3093.2019.157
  研究论文 本期目录 | 过刊浏览 |
氮对钒微合金钢粗晶热影响区(CGHAZ)的组织和性能的影响
柴锋1(),师仲然1,杨才福1,王佳骥2
1. 钢铁研究总院 工程用钢研究所 北京 100081
2. 海洋装备用金属材料及其应用国家重点实验室 鞍山 114009
Effect of Nitrogen on Microstructure and Mechanical Properties for Simulated CGHAZ of Normalized Vanadium Micro-alloyed Steel
CHAI Feng1(),SHI Zhongran1,YANG Caifu1,WANG Jiaji2
1. Division of Structurale Steels, Central Iron and Steel Research Institute, Beijing 100081, China
2. State Key Laboratory of Metal Material for Marine Equipment and Application,Anshan 114009,China
引用本文:

柴锋,师仲然,杨才福,王佳骥. 氮对钒微合金钢粗晶热影响区(CGHAZ)的组织和性能的影响[J]. 材料研究学报, 2019, 33(11): 848-856.
Feng CHAI, Zhongran SHI, Caifu YANG, Jiaji WANG. Effect of Nitrogen on Microstructure and Mechanical Properties for Simulated CGHAZ of Normalized Vanadium Micro-alloyed Steel[J]. Chinese Journal of Materials Research, 2019, 33(11): 848-856.

全文: PDF(11942 KB)   HTML
摘要: 

用热模拟方法研究了氮含量对钒微合金钢粗晶热影响区(CGHAZ)的组织和性能的影响。结果表明,氮含量为0.0031%或0.021%时,CGHAZ的韧性较差。氮含量0.0031%时CGHAZ中有少量的Ti(C,N),晶界铁素体(GBF)较少,晶内有大量尺寸较大的侧板条铁素体(FSP),解理裂纹沿FSP的直线扩展使其韧性较差。氮含量0.021%时在CGHAZ中生成了较为粗大的(Ti, V)(C, N)和GBF,解理裂纹沿GBF扩展使其韧性较差。氮含量为0.012%时低温韧性较好,在CGHAZ中生成了大量细小的(Ti, V)(C, N)粒子,且GBF尺寸相对较小,晶内有大量的针状铁素体(AF)。这些因素都有利于阻止裂纹扩展,使其低温韧性显著提高。

关键词 金属材料钒微合金化氮含量正火型粗晶热影响区    
Abstract

The effect of N-content on the microstructure and mechanical properties for the simulated coarse-grain heat-affected zone (CGHAZ) of normalized vanadium micro-alloyed steel was investigated by thermal simulation method. The results show that N-content has significant effect on the low-temperature toughness, precipitates, impact fracture morphology and the ultimate microstructure. The steel containing 0.0031% N or 0.021% N has poor CGHAZ toughness. The steel with 0.012% N has optimal CGHAZ toughness. There is slight Ti-enriched carbonitride and grain boundary ferrite in the steel of 0.0031% N, the large-sized ferrite side-plate in the major microstructure can be as the channel of crack resulting the poor CGHAZ toughness. CGHAZ of 0.021% N contains coarse (Ti, V)CN and coarse grain boundary ferrite, the crack can extend along the coarse grain boundary ferrite resulting in poor toughness. CGHAZ of 0.012% N contains thin (Ti, V)CN, the fine grain boundary ferrite and abundant acicular ferrite, which can act as an obstacle to the crack extension, resulting in preferable CGHAZ toughness.

Key wordsmetallic materials    vanadium microalloying    nitrogen content    normalized steel    simulated CGHAZ
收稿日期: 2019-03-18     
ZTFLH:  TG406  
作者简介: 柴 锋,男,1979年生,博士
SteelsCMnSiSPTiNAlV
31N0.161.560.350.0030.0060.0150.00310.0120.060
82N0.161.580.330.0030.0060.0150.00820.0150.062
120N0.161.530.360.0030.0060.0150.01200.0140.060
210N0.161.550.350.0030.0060.0160.02100.0130.059
表1  实验用钢的化学成分
图1  焊接粗晶区在不同温度下冲击功的实验结果
图2  不同氮含量实验钢焊接粗晶区的显微组织
图3  不同氮含量试验钢焊接粗晶区的EBSD取向差分布
图4  不同氮含量实验钢焊接粗晶区的EBSD取向差分布
图5  不同氮含量实验钢焊接粗晶区有效晶粒的尺寸
图6  不同氮含量试验钢CGHAZ析出粒子的TEM照片
SteelsTyped / nmVolume fraction/%V/(V+Ti)/%
31NTi(C,N)51.6±24.10.00721.4
82N(Ti ,V)(C,N)28.2±10.30.02222.7
120N(Ti,V)(C,N)28.1±9.70.11430.4
210N(Ti,V)(C,N)33.9±9.00.12444.7
表2  试验钢模拟CGHAZ析出粒子的定量统计
图 7  不同氮含量实验钢平衡态析出粒子的析出情况
图8  不同氮含量试验钢平衡态(V, Ti)(C, N)析出粒子的析出温度
图9  CGHAZ的冲击断口和二次裂纹OM和SEM形貌
图10  实验钢CGHAZ的冲击断口二次裂纹的EBSD观察
[1] Yang C F, Zhang Y Q, Wang R Z. The Principle and Application of Vanadium Steel [M]. Beijing: Metallurgy Industry Press, 2012
[1] (杨才福, 张永权, 王瑞珍. 钒钢冶金原理与应用 [M]. 北京: 冶金工业出版社, 2012)
[2] Hu J, Du L X, Xie H, et al. Microstructure and mechanical properties of TMCP heavy plate microalloyed steel [J]. Materials Science and Engineering: A, 2014, 607: 122
[3] Chai F, Yang C F, Su H, et al. Strength and toughness mechanism of high strength V-N micro-alloyed bulb-flat steel [J]. Journal of Iron and Steel Research, 2012, 24(2): 39
[3] (柴 锋, 杨才福, 苏 航等. 钒氮微合金化高强度球扁钢的强韧化机制 [J]. 钢铁研究学报, 2012, 24(2): 39)
[4] Su H, Chai X Y, Pan T, et al. Precipitation behavior of V N micro-alloyed steel at the normalizing press [J]. Chinese Journal of Engineering, 2015, 37(10): 1325
[4] (苏 航, 柴希阳, 潘 涛等. 正火过程中 V-N 微合金化钢的第二相行为 [J]. 工程科学学报, 2015, 37(10): 1325)
[5] Su H, Chai X Y, Pan T, et al. Effect of nitrogen content microstructure and strength effect in normalized V-N microalloyed steel [J]. Iron and Steel, 2014, 49(6): 85
[5] (苏 航, 柴希阳, 潘 涛等. 氮含量对正火型钒微合金化钢强化效果和显微组织的影响 [J]. 钢铁, 2014, 49(6): 85)
[6] Hannerz N E. Weld metal and HAZ toughness and hydrogen cracking susceptibility of HSLA steels as influenced by Nb, Al, V, Ti and N [J]. Welding of HSLA (Microalloyed) Structural Steels, 1976: 365
[7] Hamada M, Fukada Y, Komizo Y. Microstructure and precipitation behavior in heat affected zone of C-Mn microalloyed steel containing Nb, V and Ti [J]. The Iron and Steel Institute of Japan international, 1995, 35(10): 1196
[8] Shi Z, Yang C, Wang R, et al. Effect of nitrogen on the microstructures and mechanical properties in simulated CGHAZ of vanadium microalloyed steel varied with different heat inputs [J]. Materials Science and Engineering: A, 2016, 649: 270
[9] Zajac S, Siwecki T, Svensson L E. Influence of plate production pressing route, heat input and nitrogen on the HAZ toughness in Ti-V microalloyed steel [J]. 1992
[10] Lambert-Perlade A, Gourgues A F, Pineau A. Austenite to bainite phase transformation in the heat-affected zone of a high strength low alloy steel [J]. Acta Materialia, 2004, 52(8): 2337
[11] Guo A, Misra R D K, Liu J, et al. An analysis of the microstructure of the heat-affected zone of an ultra-low carbon and niobium-bearing acicular ferrite steel using EBSD and its relationship to mechanical properties [J]. Materials Science and Engineering: A, 2010, 527(23): 6440
[12] Gregg J M, Bhadeshia H. Solid-state nucleation of acicular ferrite on minerals added to molten steel [J]. Acta Materialia, 1997, 45(2): 739
[13] Ishikawa F, Takahashi T, Chi T. Intragranular ferrite nucleation in medium-carbon vanadium steels [J]. Metallurgical and Materials Transactions A, 1994, 25(5): 929
[14] Fang F, Yong Q L, Yang C F, et al. Microstructure and precipitation behavior in HAZ of V and Ti microalloyed steel [J]. Journal of Iron and Steel Research, International, 2009, 16(3): 68
[15] Hu J, Du L X, Wang J J. Effect of V on intragranular ferrite nucleation of high Ti bearing steel [J]. Scripta Materialia, 2013, 68(12): 953
[1] 毛建军, 富童, 潘虎成, 滕常青, 张伟, 谢东升, 吴璐. AlNbMoZrB系难熔高熵合金的Kr离子辐照损伤行为[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] 赵政翔, 廖露海, 徐芳泓, 张威, 李静媛. 超级奥氏体不锈钢24Cr-22Ni-7Mo-0.4N的热变形行为及其组织演变[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] 幸定琴, 涂坚, 罗森, 周志明. C含量对VCoNi中熵合金微观组织和性能的影响[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] 欧阳康昕, 周达, 杨宇帆, 张磊. LPSOMg-Y-Er-Ni合金的组织和拉伸性能[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] 徐利君, 郑策, 冯小辉, 黄秋燕, 李应举, 杨院生. 定向再结晶对热轧态Cu71Al18Mn11合金的组织和超弹性性能的影响[J]. 材料研究学报, 2023, 37(8): 571-580.
[8] 熊诗琪, 刘恩泽, 谭政, 宁礼奎, 佟健, 郑志, 李海英. 固溶处理对一种低偏析高温合金组织的影响[J]. 材料研究学报, 2023, 37(8): 603-613.
[9] 刘继浩, 迟宏宵, 武会宾, 马党参, 周健, 徐辉霞. 喷射成形M3高速钢热处理过程中组织的演变和硬度偏低问题[J]. 材料研究学报, 2023, 37(8): 625-632.
[10] 由宝栋, 朱明伟, 杨鹏举, 何杰. 合金相分离制备多孔金属材料的研究进展[J]. 材料研究学报, 2023, 37(8): 561-570.
[11] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[12] 王昊, 崔君军, 赵明久. 镍基高温合金GH3536带箔材的再结晶与晶粒长大行为[J]. 材料研究学报, 2023, 37(7): 535-542.
[13] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.
[14] 秦鹤勇, 李振团, 赵光普, 张文云, 张晓敏. 固溶温度对GH4742合金力学性能及γ' 相的影响[J]. 材料研究学报, 2023, 37(7): 502-510.
[15] 刘天福, 张滨, 张均锋, 徐强, 宋竹满, 张广平. 缺口应力集中系数对TC4 ELI合金低周疲劳性能的影响[J]. 材料研究学报, 2023, 37(7): 511-522.