Please wait a minute...
材料研究学报  2018, Vol. 32 Issue (8): 616-624    DOI: 10.11901/1005.3093.2017.331
  研究论文 本期目录 | 过刊浏览 |
不同氮源对掺氮石墨烯的结构和性能的影响
李子庆, 赫文秀(), 张永强, 于慧颖, 李兴盛, 刘斌
内蒙古科技大学化学与化工学院 包头 014010
Effect of Different Nitrogen Sources on Structure and Properties of Nitrogen-doped Graphene
Ziqing LI, Wenxiu HE(), Yongqiang ZHANG, Huiying YU, Xingsheng LI, Bin LIU
School of Chemistry and Chemical Engineering, Inner Mongolia University of Science & Technology, Baotou 014010, China
引用本文:

李子庆, 赫文秀, 张永强, 于慧颖, 李兴盛, 刘斌. 不同氮源对掺氮石墨烯的结构和性能的影响[J]. 材料研究学报, 2018, 32(8): 616-624.
Ziqing LI, Wenxiu HE, Yongqiang ZHANG, Huiying YU, Xingsheng LI, Bin LIU. Effect of Different Nitrogen Sources on Structure and Properties of Nitrogen-doped Graphene[J]. Chinese Journal of Materials Research, 2018, 32(8): 616-624.

全文: PDF(2822 KB)   HTML
摘要: 

先用改进的Hummers方法冷冻干燥制备氧化石墨(GO),再分别以水合肼、氨水、乙二胺、尿素作为掺氮剂和还原剂用一步水热法合成掺氮石墨烯。使用傅里叶变换红外光谱(FT-IR)、X射线粉末衍射 (XRD)、场发射扫描电子显微镜(FESEM)、X射线光电子能谱(XPS)、同步热重分析(TGA)、氮气吸脱附分析等手段表征了样品的微观结构和形貌,应用循环伏安、电化学交流阻抗、恒流等充放电技术测试了样品的电化学性能。结果表明:四种掺氮剂皆能有效还原GO,制备出掺氮含量(质量分数)分别为4.99%,6.35%,7.70%和9.18%的石墨烯。氮元素以“pyridinic N”、“pyrrolic N”、“graphitic N”三种形式掺杂到石墨烯的晶格中。由乙二胺和尿素还原制备的掺氮石墨烯比电容可达187.6 F·g-1和191.6 F·g-1,电化学性能最高。

关键词 无机非金属材料掺氮石墨烯水热法电化学性能    
Abstract

Graphite oxide (GO) was prepared via freeze-drying process of a modified Hummers method and then nitrogen-doped graphene was synthesized by one-step hydrothermal method with hydrazine hydrate, ethylenediamine, ammonia and urea as nitrogen sources and reductants respectively. The microstructure and morphology of the as-produced graphene were characterized by means of Fourier transform infrared spectroscopy, X-ray diffraction, field emission scanning electron microscope, X-ray photoelectron spectroscopy, synchronous thermogravimetric analyzer and nitrogen adsorption-desorption analyzer. The electrochemical performance of the prepared products was assessed by means of cyclic voltammetry, electrochemical impedance spectroscopy, galvanostatic charge/discharge technology. Results show that the four nitrogen-containing agents could effectively reduce GO to produce different graphenes, the corresponding nitrogen content (in mass fraction) of which is 4.99%, 7.7%, 6.35% and 9.18%, respectively. The doped-N atoms coupled into the graphene lattice in forms of "pyridinic N", "pyrrolic N" and "graphitic N". The specific capacitance of the nitrogen-doped graphene prepared with ethylenediamine and urea as reductants could reach 187.6 F·g-1 and 191.6 F·g-1 respectively, implying excellent electrochemical performance.

Key wordsinorganic non-metalic materials    nitrogen-doped graphene    hydrothermal method    electrochemical performance
收稿日期: 2017-05-22     
ZTFLH:  TQ127  
基金资助:资助项目 内蒙古自然科学基金(2015MS0208),内蒙古自治区高等学校青年科技英才计划-青年科技领军人才A类(NJYT-14-A08),包头市科技计划(2015C2004-1,2016-4)
作者简介:

作者简介 李子庆,男,1992年生,硕士生

图1  石墨、GO、RGO和NGX的FT-IR图
图2  石墨、GO、RGO和NGX的XRD图谱
图3  GO、RGO和NGX的SEM图
Sample/mass fraction,% GO RGO NG1 NG2 NG3 NG4
C 64.97 72.07 82.81 77.50 77.73 74.22
O 35.03 27.93 12.20 15.80 17.28 16.60
N 0 0 4.99 7.70 6.35 9.18
表1  GO、RGO和NGX的EDS定量分析数据
图4  石墨、GO、RGO和NGX的TGA曲线
Sample NG1 NG2 NG3 NG4
Pyridinic N/% 37.44 15.64 34.53 25.57
Pyrrolic N/% 33.89 43.36 28.80 39.68
Graphitic N/% 28.67 41.00 36.67 34.75
表2  NGX的N1sXPS定量分析数据
图5  GO、RGO和NGX的XPS全谱图、GO的C1s XPS谱图以及NGX(c-f)的高分辨率N1s XPS谱图
图6  NGX的氮气吸附-脱附曲线
Sample C GO RGO NG1 NG2 NG3 NG4
σ / Sm-1 4.32×104 <10-3 220.1 263.8 388.4 312.6 427.1
表3  石墨粉、GO、RGO和NGX的电导率(σ)
图7  NGX在10 mV s-1扫速下的循环伏安曲线以及RGO和NGX的电化学交流阻抗谱图
图8  NG4在不同电流密度下的充放电曲线和同一电流密度下NGX与RGO的循环寿命曲线
[1] Ahmad S, Guillen E, Kavan L, et al.Metal free sensitizer and catalyst for dye sensitized solar cells[J]. Energ. Environ. Sci., 2013, 6(12): 3439
[2] Lin Y, Jin J, Kusmartsevab O, et al.Preparation of pristine graphene sheets and large-area/ultrathin graphene films for high conducting and transparent applications[J]. J. Phys. Chem. C, 2013, 117(33): 17237
[3] Wu X L, Jiang L L, Long C L, et al.Dual support system ensuring porous Co-Al hydroxide nanosheets with ultrahigh rate performance and high energy density for supercapacitors[J]. Adv. Funct. Mater., 2015, 25(11): 1648
[4] Konatham D, Striolo A.Molecular design of stable graphene nanosheets dispersions[J]. Nano. Lett., 2008, 8(12): 4630
[5] Greil P.Perspectives of nano-carbon based engineering materials[J]. Adv. Eng. Mater., 2015, 17(2): 124
[6] Bonaccorso F, Colombo L, Yu G H, et al.Graphene, related two-dimensional crystals, and hybrid systems for energy conversion and storage[J]. Science, 2015, 347: 6217
[7] Zhang L, Wu H B, Yan Y, et al.Hierarchical MoS2 microboxes constructed by nanosheets with enhanced electrochemical properties for lithium storage and water splitting[J]. Energ. Environ. Sci., 2014, 7(10): 3302
[8] Okada Y, Serbyn M, Lin H, et al.Observation of dirac node formation and mass acquisition in a topological crystalline insulator[J]. Science, 2013, 341(6153): 1496
[9] Singh A K, Andleeb S, Singh J, et al.Ultraviolet-light-induced reversible and stable carrier modulation in MoS2 field-effect transistors[J]. Adv. Funct. Mater., 2014, 24(45): 7125
[10] Fazio G, Ferrighi L, Di Valentin C.Boron-doped graphene as active electrocatalyst for oxygenreduction reaction at a fuel-cell cathode[J]. J. C., 2014, 318: 203
[11] Bangert U, Zan R.Electronic functionalisation of graphene via external doping and dosing[J]. Int. Mater. Rev., 2015, 60(3): 133
[12] Amirfakhri S J, Pascone P A, Meunier J L, et al.Fe-N-doped graphene as a superior catalyst for H2O2 reduction reaction in neutral solution[J]. J. Catal., 2015, 323: 55
[13] Hou Y, Wen Z H, Cui S M, et al.An advanced nitrogen-doped graphene/cobalt-embedded porous carbon polyhedron hybrid for efficient catalysis of oxygen reduction and water splitting[J]. Adv. Funct. Mater., 2015, 25(6): 872
[14] Singh K P, Bae E J, Yu J S.Fe-P: A new class of electroactive catalyst for oxygen reduction reaction[J]. J.Am.Chem.Soc, 2015, 137(9): 3165
[15] Liu Y X, Ma Y L, Jin Y, et al.Microwave-assisted solvothermal synthesis of sulfur-doped graphene for electrochemical sensing[J]. J Electroanal Chem., 2015, 739: 172
[16] Liu Y Q, Wei D C, Di Z N et al. Method for preparing graphene by chemical vapor deposition method [P].Chinese Patent No. 00810113596, 2008(刘云圻, 魏大程, 狄重安等. 化学气相沉积法制备石墨烯的方法 [P].中国专利00810113596, 2008)
[17] Wang G X, Shen X P, Wang B, et al.Synthesis and characterisation of hydrophilic and organophilic graphene nanosheets[J]. Carbon, 2009, 47(5): 1359
[18] OuYang F P, Huang B, Li Z Y, et al. Chemical functionalization of graphene nanoribbons by carboxyl groups on stone-wales defects[J]. J. Phys. Chem. C, 2008, 112(31): 12003
[19] Sundaram R S, Gomez N C, Balasubramanian K, et al.Electrochemical modification of graphene[J]. Adv. Mater., 2008, 20(16): 3050
[20] Usachov D, Vilkov O, Gruneis A, et al.Nitrogen-doped graphene: efficient growth, structure, and electronic properties[J]. Nano Lett., 2011, 11(12): 5401
[21] Miao Q H, Wang L D, Liu Z Y, et al.Magnetic properties of N-doped graphene with high Curie temperature[J]. Scientific Reports. 2016, 6: 21832
[22] Bianco G V, Losurdo M, Giangregorio M M, et al.Exploring and rationalising effective n-doping of large area CVD-graphene by NH3[J]. P. C. C. P., 2014, 16(8): 3632
[23] Su P, Guo H L, Peng S, et al.Preparation of nitrogen-doped graphene and its supercapacitive properties[J]. Phys. Chem. Mater, 2012, 28(11): 2745(苏鹏, 郭慧林, 彭三等. 氮掺杂石墨烯的制备及其超级电容性能[J]. 物理化学学报, 2012, 28(11): 2745)
[24] Sheng Z H, Shao L, Chen J J, et al.Catalyst-free synthesis of nitrogen-doped graphene via thermal annealing graphite oxide with melamine and its excellent electrocatalysis[J]. ACS Nano, 2011, 5(6): 4350
[25] Jin Z, Yao J, Kittrell C.Growth of bilayer graphene on insulating substrates[J]. ACS Nano, 2011, 5(10): 8241
[26] Reddy A L M, Srivastava A, Gowda S R, et al. Attractive interaction between transition-metal atom impurities and vacancies in graphene: a first-principles study [J]. ACS Nano, 2010, 4, (6337): 625
[27] Qian W, Cui X, Hao R, et al.Facile preparation of nitrogen-doped few-layer graphene via supercritical reaction[J]. ACS Appl. Mater. Interfaces, 2011, 3(7): 2259
[28] Kovtyukhova N I, Ollivier P J, Martin B R, et al.Layer-by-layer assembly of ultrathin composite films from micron-sized graphite oxide sheets and polycations[J]. Chem. Mater., 1999, 11(3): 771
[29] Zhao L, Fan L, Zhou M, et al.Nitrogen-containing hydrothermal carbons with superior performance in supercapacitors[M]. Adv. Mater., 2010, 22: 5202
[30] Wang K, Ji B C, Han M J, et al.Preparation of nitrogen-doped graphene with solid microwave method[J]. Chinese J. Inorg. Chem., 2013, 29(10): 2105)(王凯, 季炳成, 韩美佳 等. 微波固相法快速制备氮掺杂石墨烯[J]. 无机化学学报, 2013, 29(10): 2105)
[1] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[2] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[3] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[4] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.
[5] 李延伟, 罗康, 姚金环. Ni(OH)2 负极材料的十二烷基硫酸钠辅助制备及其储锂性能[J]. 材料研究学报, 2023, 37(6): 453-462.
[6] 余谟鑫, 张书海, 朱博文, 张晨, 王晓婷, 鲍佳敏, 邬翔. N掺杂生物炭的制备及其对Co2+ 的吸附性能[J]. 材料研究学报, 2023, 37(4): 291-300.
[7] 朱明星, 戴中华. SrSc0.5Nb0.5O3 改性BNT基无铅陶瓷的储能特性研究[J]. 材料研究学报, 2023, 37(3): 228-234.
[8] 刘志华, 岳远超, 丘一帆, 卜湘, 阳涛. g-C3N4/Ag/BiOBr复合材料的制备及其光催化还原硝酸盐氮[J]. 材料研究学报, 2023, 37(10): 781-790.
[9] 周毅, 涂强, 米忠华. 制备方法对磷酸盐微晶玻璃结构和性能的影响[J]. 材料研究学报, 2023, 37(10): 739-746.
[10] 谢锋, 郭建峰, 王海涛, 常娜. ZnO/CdS/Ag复合光催化剂的制备及其催化和抗菌性能[J]. 材料研究学报, 2023, 37(1): 10-20.
[11] 刘东璇, 陈平, 曹新荣, 周雪, 刘莹. 碗状C@FeS2@NC复合材料的制备及其电化学性能[J]. 材料研究学报, 2023, 37(1): 1-9.
[12] 余超, 邢广超, 吴郑敏, 董博, 丁军, 邸敬慧, 祝洪喜, 邓承继. 亚微米Al2O3 对重结晶碳化硅的作用机制[J]. 材料研究学报, 2022, 36(9): 679-686.
[13] 方向明, 任帅, 容萍, 刘烁, 高世勇. 自供能Ag/SnSe纳米管红外探测器的制备和性能研究[J]. 材料研究学报, 2022, 36(8): 591-596.
[14] 李福禄, 韩春淼, 高嘉望, 蒋健, 许卉, 李冰. 氧化石墨烯的变温发光[J]. 材料研究学报, 2022, 36(8): 597-601.
[15] 朱晓东, 夏杨雯, 喻强, 杨代雄, 何莉莉, 冯威. Cu掺杂金红石型TiO2 的制备及其光催化性能[J]. 材料研究学报, 2022, 36(8): 635-640.