Please wait a minute...
材料研究学报  2018, Vol. 32 Issue (12): 921-928    DOI: 10.11901/1005.3093.2018.163
  研究论文 本期目录 | 过刊浏览 |
钛合金表面激光熔覆Ti-Ni+TiN+MoS2/TiS自润滑复合涂层
高秋实1,2, 闫华1,2(), 秦阳1,2, 张培磊1,2, 陈正飞1,2, 郭加龙1,2, 于治水1,2
1 上海工程技术大学材料工程学院 上海 201620
2 上海市激光先进制造技术协同创新中心 上海 201620
Self-lubricating Wear Resistant Composite Coating Ti-Ni+TiN+MoS2/TiS Prepared on Ti-6Al-4V Alloy by Laser Cladding
Qiushi GAO1,2, Hua YAN1,2(), Yang QIN1,2, Peilei ZHANG1,2, Zhengfei CHEN1,2, Jialong GUO1,2, Zhishui YU1,2
1 Shanghai University of Engineering Science, College of Materials Engineering, Shanghai 201620, China
2 Shanghai Collaboratme Innovation Center of Laser Advanced Manufacturing Technology, Shanghai 201620, China
引用本文:

高秋实, 闫华, 秦阳, 张培磊, 陈正飞, 郭加龙, 于治水. 钛合金表面激光熔覆Ti-Ni+TiN+MoS2/TiS自润滑复合涂层[J]. 材料研究学报, 2018, 32(12): 921-928.
Qiushi GAO, Hua YAN, Yang QIN, Peilei ZHANG, Zhengfei CHEN, Jialong GUO, Zhishui YU. Self-lubricating Wear Resistant Composite Coating Ti-Ni+TiN+MoS2/TiS Prepared on Ti-6Al-4V Alloy by Laser Cladding[J]. Chinese Journal of Materials Research, 2018, 32(12): 921-928.

全文: PDF(8862 KB)   HTML
摘要: 

以NiCrBSi、TiN和Ni包MoS2为熔覆材料,采用激光熔覆技术在Ti-6Al-4V合金表面制备了以TiN、TiMo和Ti-Ni金属间化合物为增强相,以MoS2、TiS为润滑相的自润滑复合涂层。采用X射线衍射仪(XRD)、扫描电子显微镜(SEM)、能谱仪(EDS)、显微硬度仪和多功能摩擦磨损实验机等手段分析涂层的物相、显微组织结构、显微硬度和摩擦学性能,研究了复合涂层的磨损机理。结果表明:复合涂层的平均显微硬度为1060~1140HV0.3,约为基体硬度(约为370HV0.3)的3倍。由于涂层中硬质增强相TiN、TiMo、Ti-Ni和润滑相MoS2、TiS的综合作用,TiN含量为25%的复合涂层其摩擦系数(0.3199)和磨损量(2.2 mg)均比基体的(0.3535和11.8 mg)低,具有良好的自润滑耐磨性能。

关键词 材料表面与界面激光熔覆复合涂层钛合金自润滑耐磨性    
Abstract

A self-lubricating composite coating of Ti-Ni+TiN+MoS2/TiS with TiN, TiMo and Ti2Ni as reinforcement phases, while MoS2 and TiS as lubricant phases, was fabricated on Ti-6Al-4V alloy by laser cladding with composite alloy powder of NiCrBSi, TiN and Ni-coated MoS2 as cladding materials. The phase compositions, microstructure, microhardness and tribological properties of the coating were characterized by X-ray diffractometer (XRD), scanning electron microscope (SEM), energy dispersive spectrometer (EDS), microhardness tester and multi-purpose friction and wear testing machine,respectively. Results show that the mean microhardness of the composite coating (between 1060 and 1140HV0.3) is about 3 times higher than that of the substrate (370HV0.3). Due to the combined effect of hard reinforcing phases TiN, TiMo, and Ti-Ni, as well as lubricating phases MoS2 and TiS, the friction coefficient (0.3199) and the wear mass loss (2.2 mg) of the composite coating are both lower than those of the substrate (0.3535 and 11.8 mg). Therefore, the prepared composite coating has good self-lubricating wear resistance.

Key wordssurface and interface in the materials    laser cladding    composite coatings    titanium alloy    self-lubricating wear resistance
收稿日期: 2018-02-09     
基金资助:国家自然科学基金(51405288, 51605276),上海市科技创新行动计划 (17JC1400600, 17JC1400601),上海工程技术大学研究生创新项目(17KY0503)
作者简介:

作者简介 高秋实,男,1993年生,硕士生

Element Al V O H N C Fe Ti
Composition 6.3 4.2 0.20 0.01 0.05 0.30 0.30 Bal.
表1  基体Ti-6Al-4V化学成分(质量分数,%)
Element B C Cr Fe Mn Mo Si Ni
Composition 3.30 0.72 15.10 3.77 0.01 0.02 4.10 Bal.
表2  NiCrBSi粉末化学成分(质量分数,%)
Sample
Number
NiCrBSi TiN Ni clad MoS2
N1 33.4 33.3 33.3
N2 50 25 25
N3 66.6 16.7 16.7
表3  预涂混合粉末的组成(质量分数,%)
图1  复合涂层的截面和结合区的SEM图片
图2  复合涂层的X射线衍射图谱
图3  复合涂层的SEM照片
图4  复合涂层的SEM照片和EDS分析结果
图5  复合涂层的显微硬度分布
图6  复合涂层的室温磨擦系数
图7  复合涂层和基体的磨损量
图8  复合涂层和基体磨损的形貌SEM照片
[1] Fan H M, Liu H Q, Meng X J, et al.Study on Ni-based high-temperature self-lubricating wear resistant composite coating on Ti6Al4V by laser cladding[J]. Mater. Rev., 2013, 27(12): 102(范红梅, 刘海青, 孟祥军等. Ti6Al4V合金激光熔覆镍基高温自润滑耐磨复合涂层研究[J]. 材料导报, 2013, 27(12): 102)
[2] Liu H Q, Liu X B, Meng X J, et al.Study on γ-NiCrAlTi/TiC+TiWC2/CrS+Ti2CS high-temperature self-lubricating wear resistant composite coating on Ti-6Al-4V by laser cladding[J]. Chin. J. Lasers, 2014, 41(3): 303005(刘海青, 刘秀波, 孟祥军等. Ti-6Al-4V合金激光熔覆γ-NiCrAlTi/TiC+TiWC2/CrS+Ti2CS高温自润滑耐磨复合涂层研究[J]. 中国激光, 2014, 41(3): 303005 )
[3] Zhai Y J, Liu X B, Qiao S J, et al.Characteristics of laser clad α-Ti/TiC+(Ti,W)C1-x/Ti2SC+TiS composite coatings on TA2 titanium alloy[J]. Opt. Laser Technol., 2017, 89: 97
[4] Shan X H, Wang C S, Yu Q.Microstructure and property of Nb-Al-Ti high temperature alloy coatings by laser cladding on Ti alloy surfaces[J]. Chin. J. Lasers, 2016, 43(8): 802015(单晓浩, 王存山, 于群. 钛合金表面激光熔覆Nb-Al-Ti高温合金涂层组织与性能[J]. 中国激光, 2016, 43(8): 802015 )
[5] Sun R L, Niu W, Wang C Y.Microstructure and wear resistance of TiN-NiCrBSi laser clad layer on titanium alloy surface[J]. Rare Metal Mater. Eng., 2007, 36: 7(孙荣禄, 牛伟, 王成扬. 钛合金表面激光熔覆TiN-Ni基合金复合涂层的组织和磨损性能[J]. 稀有金属材料与工程, 2007, 36: 7)
[6] Wang Y, Li J L, Dang C Q, et al.Influence of carbon contents on the structure and tribocorrosion properties of TiSiCN coatings on Ti6Al4V[J]. Tribol. Int., 2017, 109: 285
[7] Lu X L, Liu X B, Yu P C, et al.Synthesis and characterization of Ni60-hBN high temperature self-lubricating anti-wear composite coatings on Ti6Al4V alloy by laser cladding[J]. Opt. Laser Technol., 2016, 78: 87
[8] Arias-González F, del Val J, Comesa?a R, et al. Fiber laser cladding of nickel-based alloy on cast iron[J]. Appl. Surf. Sci., 2016, 374: 197
[9] Yan H, Zhang P L, Yu Z S, et al.Microstructure and tribological properties of laser-clad Ni-Cr/TiB2 composite coatings on copper with the addition of CaF2[J]. Surf. Coat. Technol., 2012, 206: 4046
[10] Song L J, Xiao H, Ye J Y, et al.Direct laser cladding of layer-band-free ultrafine Ti6Al4V alloy[J]. Surf. Coat. Technol., 2016, 307: 761
[11] Farayibi P K, Folkes J, Clare A, et al.Cladding of pre-blended Ti-6Al-4V and WC powder for wear resistant applications[J]. Surf. Coat. Technol., 2011, 206: 372
[12] Lin Y C, Lin Y C, Chen Y C.Evolution of the microstructure and tribological performance of Ti-6Al-4V cladding with TiN powder[J]. Mater. Des., 2012, 36: 584
[13] Yu P C, Liu X B, Lu X L, et al.High-temperature tribological properties of laser clad composite coatings on Ti6Al4V alloy[J]. Tribology, 35: 737(余鹏程, 刘秀波, 陆小龙等. Ti6Al4V合金表面激光熔覆复合涂层的高温摩擦学性能研究[J]. 摩擦学学报, 2015, 35: 737)
[14] Weng F, Yu H J, Chen C Z, et al.Microstructures and properties of TiN reinforced Co-based composite coatings modified with Y2O3 by laser cladding on Ti-6Al-4V alloy[J]. J. Alloys Compd., 2015, 650: 178
[15] Sun R L, Lei Y W, Niu W.Laser clad TiC reinforced NiCrBSi composite coatings on Ti-6Al-4V alloy using a CW CO2 laser[J]. Surf. Coat. Technol., 2009, 203: 1395
[16] Lu X L, Liu X B, Yu P C, et al.Effects of annealing on laser clad Ti2SC/CrS self-lubricating anti-wear composite coatings on Ti6Al4V alloy: microstructure and tribology[J]. Tribol. Int., 2016, 101: 356
[17] Wei P, Wei Z Y, Chen Z, et al.The AlSi10Mg samples produced by selective laser melting: single track, densification, microstructure and mechanical behavior[J]. Appl. Surf. Sci., 2017, 408: 38
[18] Lv Y H, Li J, Tao Y F, et al.High-temperature wear and oxidation behaviors of TiNi/Ti2Ni matrix composite coatings with TaC addition prepared on Ti6Al4V by laser cladding[J]. Appl. Surf. Sci., 2017, 402: 478
[19] Zhang P L, Liu X P, Lu Y L, et al.Microstructure and wear behavior of Cu-Mo-Si coatings by laser cladding[J]. Appl. Surf. Sci., 2014, 311: 709
[1] 王乾, 蒲磊, 贾彩霞, 李志歆, 李俊. 碳纤维/环氧复合材料界面改性的不均匀性[J]. 材料研究学报, 2023, 37(9): 668-674.
[2] 陆益敏, 马丽芳, 王海, 奚琳, 徐曼曼, 杨春来. 脉冲激光沉积技术生长铜材碳基保护膜[J]. 材料研究学报, 2023, 37(9): 706-712.
[3] 冯叶, 陈志勇, 姜肃猛, 宫骏, 单以银, 刘建荣, 王清江. 一种NiCrAlSiY涂层对Ti65钛合金板材循环氧化和室温力学性能的影响[J]. 材料研究学报, 2023, 37(7): 523-534.
[4] 杜菲菲, 李超, 李显亮, 周尧尧, 阎庚旭, 李国建, 王强. 磁控溅射TiAlTaN/TaO/WS复合涂层及其钛合金的切削性能[J]. 材料研究学报, 2023, 37(4): 301-307.
[5] 陈志鹏, 朱智浩, 宋梦凡, 张爽, 刘田雨, 董闯. 基于Ti-6Al-4V团簇式设计的超高强Ti-Al-V-Mo-Nb-Zr合金[J]. 材料研究学报, 2023, 37(4): 308-314.
[6] 张瑞雪, 马英杰, 贾焱迪, 黄森森, 雷家峰, 邱建科, 王平, 杨锐. 亚稳 β 钛合金热处理显微组织演变和元素再分配行为[J]. 材料研究学报, 2023, 37(3): 161-167.
[7] 田志刚, 李新梅, 秦忠, 王晓辉, 刘伟斌, 黄永. CoCrFeNiTi x 高熵合金涂层的显微组织和耐磨性能[J]. 材料研究学报, 2023, 37(3): 219-227.
[8] 闫春良, 郭鹏, 周靖远, 汪爱英. Cu掺杂非晶碳薄膜的电学性能及其载流子输运行为[J]. 材料研究学报, 2023, 37(10): 747-758.
[9] 陈开旺, 张鹏林, 李树旺, 牛显明, 胡春莲. 莫来石粉末化学镀镍和涂层的高温摩擦学性能[J]. 材料研究学报, 2023, 37(1): 39-46.
[10] 王伟, 周山琦, 宫鹏辉, 张浩泽, 史亚鸣, 王快社. 退火温度对TC4钛合金热轧板材的显微组织、织构和力学性能影响[J]. 材料研究学报, 2023, 37(1): 70-80.
[11] 单位摇, 王永利, 李静, 熊良银, 杜晓明, 刘实. 锆合金表面Cr基涂层的耐高温氧化性能[J]. 材料研究学报, 2022, 36(9): 699-705.
[12] 程红杰, 刘黄娟, 姜婷, 王法军, 李文. 近红外反射超疏水黄色涂层的制备和性能[J]. 材料研究学报, 2022, 36(9): 687-698.
[13] 高巍, 刘江南, 魏敬鹏, 要玉宏, 杨巍. TC4钛合金表面氧化亚铜掺杂微弧氧化层的结构和性能[J]. 材料研究学报, 2022, 36(6): 409-415.
[14] 蔡雨升, 韩洪智, 任德春, 吉海宾, 雷家峰. 化学腐蚀工艺对激光选区熔化成形TC4钛合金表面粗糙度的影响[J]. 材料研究学报, 2022, 36(6): 435-442.
[15] 王俊, 王克鲁, 鲁世强, 李鑫, 欧阳德来, 邱仟, 高鑫, 张开铭. TA5钛合金的应变补偿物理本构模型和加工图[J]. 材料研究学报, 2022, 36(3): 175-182.