Please wait a minute...
材料研究学报  2018, Vol. 32 Issue (12): 913-920    DOI: 10.11901/1005.3093.2018.140
  研究论文 本期目录 | 过刊浏览 |
阿司匹林对聚己内酯载体材料的结构和缓释性能的影响
刘淑琼(), 刘瑞来, 饶瑞晔
武夷学院生态与资源工程学院 福建省生态产业绿色技术重点实验室 武夷山 354300
Effect of Aspirin on Structure of Polycaprolactone Carried Materials and Controlled-release Performance
Shuqiong LIU(), Ruilai LIU, Ruiye RAO
(Fujian Provincial Key Laboratory of Eco-Industrial Green Technology, College of Ecological and Resources Engineering, Wuyi University, Wuyishan 354300, China)
引用本文:

刘淑琼, 刘瑞来, 饶瑞晔. 阿司匹林对聚己内酯载体材料的结构和缓释性能的影响[J]. 材料研究学报, 2018, 32(12): 913-920.
Shuqiong LIU, Ruilai LIU, Ruiye RAO. Effect of Aspirin on Structure of Polycaprolactone Carried Materials and Controlled-release Performance[J]. Chinese Journal of Materials Research, 2018, 32(12): 913-920.

全文: PDF(3955 KB)   HTML
摘要: 

以聚己内酯(PCL)为载体,采用相分离法制备载阿司匹林(ASA)的PCL/ASA缓释复合材料,研究了ASA的含量对PCL/ASA复合材料的纳米纤维结构形成、孔隙率、亲水性、生物活性以及ASA缓释性能的影响。结果表明,随着ASA含量的提高复合材料由原本纯PCL的纳米纤维基体结构转变为非纳米实壁结构;同时,随着ASA含量的提高PCL/ASA复合材料的孔隙率从96.67%下降到52.28%,吸水率从38.00%上升到59.34%,即亲水性能提高;生物活性的测试结果表明,纯PCL纳米纤维材料和载ASA的PCL/ASA复合材料都具有良好的生物活性,纳米纤维结构和ASA都影响材料的生物活性。缓释性能的测试结果表明,PCL/ASA复合材料中ASA的缓释性能与材料的微观结构有关,在微纳米结构的PCL/ASA复合体系中ASA的累积释药量在同等时间内最大达到25.23%。

关键词 复合材料聚己内酯阿司匹林结构缓释    
Abstract

A series of controlled-release composites of polycapolactone (PCL)/aspirin(ASA) were fabricated via chemically induced phase separation technique with polycapolactone as carrier. The effect of different content of ASA on the morphology, biological activity, hydrophilic performance, porosity and controlled-release performance of the composites were investigated. Results show that the addition of the ASA played a crucial role for forming the unique nanofibrous structure of PCL/ASA composite. The nanofibrous structure of composite fades away with the increasing amount of ASA. The hydrophilic performance increases from 38.00% to 59.34% and the porosity decreases from 96.67% to 52.28% with the increasing ASA-content. Furthermore, both of the pure PCL and PCL/ASA composite all present good biological activity, in other word, both of the nanofibrous structure and ASA all exhibit effect on the biological activity of composite materials. The controlled release of the ASA relates to the structure of PCL/ASA composite, and the accumulated release amount of the PCL/ASA composite with micro- and nano-structure can reach to 25.23% over an equal period of time.

Key wordscomposite    polycaprolactone    aspirin    structure    controlled release
收稿日期: 2018-01-31     
基金资助:国家自然科学基金(51406141),福建省生态产业绿色技术重点实验室开放课题(WYKF2017-10)
作者简介:

作者简介 刘淑琼,女,1985年生,硕士

图1  PCL/ASA纳米纤维复合材料的制备流程
图2  不同ASA含量的PCL/ASA复合材料的电镜照片
图3  纯ASA和不同ASA含量的PCL/ASA复合材料的FTIR谱图
图4  ASA含量不同的PCL/ASA复合材料浸泡模拟体液7~14 d的SEM照片
图5  PCL/ASA(5%)复合材料浸泡模拟体液的FTIR谱图
ASA/%, mass fraction Porosity/% Water absorbing
rate/%
0 96.67 38.00
5 73.89 44.55
10 72.31 55.34
15 52.28 59.34
表1  不同阿司匹林含量的PCL/ASA复合材料的孔隙率和吸水率
图6  ASA标准曲线方程图
图7  ASA含量对PCL/ASA复合材料缓释性能的影响
[1] Zou F D.Study on fabrication of POC/PLA nanofiber material by electrospinning [D]. Shanghai: Donghua University, 2017(邹方东. 静电纺丝法制备POC/PLA纳米纤维材料的研究 [D]. 上海: 东华大学, 2017)
[2] Su Y J.Preparation of starch-polyvinyl alcohol nanofiber membrane and its slow and control release property [D]. Changchun: Jilin Agricultural University, 2015(苏瑛杰. 淀粉—聚乙烯醇纳米纤维膜的制备及缓控释性能研究 [D]. 长春: 吉林农业大学, 2015)
[3] Li X Y, Yang Q, Ouyang J, et al.Chitosan modified halloysite nanotubes as emerging porous microspheres for drug carrier[J]. Appl. Clay Sci., 2016, 126: 306
[4] Zhang J, Ma S, Liu Z, et al.Guided bone regeneration with asymmetric collagen-chitosan membranes containing aspirin-loaded chitosan nanoparticles[J]. Int. J. Nanomedicine, 2017, 12: 8855
[5] Di L J, Chen Y X, Zhao K, et al.Aspirin for the chemoprevention of colorectal adenomas: a Meta-analysis[J]. Chongqing Med., 2011, 40: 1889(狄连君, 陈有享, 赵逵等. 阿司匹林预防结直肠腺瘤的Meta分析[J]. 重庆医学, 2011, 40: 1889)
[6] Song N, Chen S, Huang X.Immobilization of catalase by using Zr(IV)-modified collagen fiber as the supporting matri[J]. Process Biochem., 2011, 46: 2187
[7] Huang X J, Yu A G, Jiang J, et al.Surface modification of nanofibrous poly(acrylonitrile-co-acrylic acid) membrane with biomacromolecules for lipase immobilization[J]. J. Mol. Catal. Enzym., 2009, 57B: 250
[8] Liu K, Li X F, Li X M, et al.Lowering the cationic demand caused by PGA in papermaking by solute adsorption and immobilized pectinase on chitosan beads[J]. Carbohyd. Polym., 2010, 82: 648
[9] Schmidt T F, Casel L, dos Santos David S Jr, et al. Enzyme activity of horseradish peroxidase immobilized in chitosan matrices in alternated layers[J]. Mater. Sci. Eng., 2009, 29C: 1889
[10] Wei A F.Fabrication and properties of the composite nanofiber scaffold loaded with drugs [D]. Jiangsu: Jiangnan University, 2012(魏安方. 复合纳米纤维支架载药体系的构建与性能研究 [D]. 江苏: 江南大学, 2012)
[11] Wei A F, Wang J, Wang X Q, et al.Preparation and characterization of the electrospun nanofibers loaded with clarithromycin[J]. J. Appl. Polym. Sci., 2010, 118: 346
[12] Song B T, Wu C T, Chang J.Dual drug release from electrospun poly(lactic-co-glycolic acid)/mesoporous silica nanoparticles composite mats with distinct release profiles[J]. Acta Biomater., 2012, 8: 1901
[13] Xie J W, Marijnissen J C M, Wang C H. Microparticles developed by electrohydrodynamic atomization for the local delivery of anticancer drug to treat C6 glioma in vitro[J]. Biomaterials, 2006, 27: 3321
[14] Verreck G, Chun I, Rosenblatt J, et al.Incorporation of drugs in an amorphous state into electrospun nanofibers composed of a water-insoluble, nonbiodegradable polymer[J]. J. Controlled Release, 2003, 92: 349
[15] Zhang S F, Feng Y K, Zhang L, et al.Biodegradable polyesterurethane networks for controlled release of aspirin[J]. J. Appl. Polym. Sci., 2010, 116: 861
[16] Jiang Y Y.Preparation and property study of electrospun drug-loaded PLA/SF composite membranes [D]. Jiangsu: Jiangnan University, 2012(蒋岩岩. 载药PLA/SF复合纳米纤维膜的制备及性能研究 [D]. 江苏: 江南大学, 2012)
[17] Xiao C.The study of polyethylene glycol-aspirin solw release [D]. Ganzhou: Gannan Normal University, 2012(肖琛. 聚乙二醇—阿司匹林缓释药物的研究 [D]. 赣州: 赣南师范学院, 2012)
[18] Lu J Z.Preparation and characterization of ASA-β-cyclodextrin inclusion complexes-loaded PLGA microspheres for sustainde release [D]. Changchun: Jilin University, 2016(卢建忠. 载阿司匹林-β-环糊精包合物PLGA微球的制备及表征检测 [D]. 长春: 吉林大学, 2016)
[19] Dash T K, Konkimalla V B.Poly-?-caprolactone based formulations for drug delivery and tissue engineering: a review[J]. J. Controlled Release, 2012, 158: 15
[20] Wen C X, Zhou Y, Zhou C, et al.Enhanced radiosensitization effect of curcumin delivered by PVP-PCL nanoparticle in lung cancer[J]. J. Nanomater., 2017, 2017: 9625909
[21] Duncan R.Polymer conjugat esasanti cancer nanomedicines[J]. Nat. Rev. Cancer, 2006, 6: 688
[22] Di L, Kerns E H.Drug-Like Properties: Concepts, Structure Design and Methods from ADME to Toxicity Optimization [M]. 2nd Ed. USA: Academic Press, 2016
[23] Flores F C, Rosso R S, Cruz L, et al.An innovative polysaccharide nanobased nail formulation for improvement of onychomycosis treatment[J]. Eur. J. Pharm. Sci., 2017, 100: 56
[24] Liu S Q, Xiao X F, Liu R F, et al.Fabrication of poly (L-lactic acid) nanofibrous scaffolds by thermally induced phase separation[J]. Chem. J. Chin. Univ., 2011, 32: 372(刘淑琼, 肖秀峰, 刘榕芳等. 热致相分离制备聚乳酸纳米纤维支架[J]. 高等学校化学学报, 2011, 32: 372)
[25] Xu C Y, Inai R, Kotaki M, et al.Aligned biodegradable nanofibrous structure: a potential scaffold for blood vessel engineering[J]. Biomaterials, 2004, 25: 877
[26] Liu S Q, Xiao X F.Cytocompatibility of PCL/PVP composite nanofibrous scaffolds[J]. Chin. J. Mater. Res., 2014, 28: 769(刘淑琼, 肖秀峰. PVP/PCL纳米纤维复合支架的生物活性[J]. 材料研究学报, 2014, 28: 769)
[27] Cüneyt Tas A.Synthesis of biomimetic Ca-hydroxyapatite powders at 37℃ in synthetic body fluids[J]. Biomaterials, 2000, 21: 1429
[28] Liu X R, Cao Y, Chen L, et al.Crystallization behavior of nanosized hydroxyapatite- poly (ε-caprolactone) composite biomaterials[J]. J. Hefei Univ. Technol.(Nat. Sci.), 2007, 30: 1462(刘晓荣, 曹阳, 陈蕾等. 纳米HA-PCL复合生物材料的结晶行为研究[J]. 合肥工业大学学报(自然科学版), 2007, 30: 1462)
[29] Xu Y Z, He D, Xiao X F, et al.Preparation and bioactivity of hydroxyapatite/polycaprolacton composites[J]. J. East China Univ. Sci. Technol.( Nat. Sci. Ed.), 2006, 32: 709(徐艺展, 何丹, 肖秀峰等. 羟基磷灰石/聚己内酯生物复合材料的制备及其生物活性[J]. 华东理工大学学报(自然科学版), 2006, 32: 709)
[1] 潘新元, 蒋津, 任云飞, 刘莉, 李景辉, 张明亚. 热挤压钛/钢复合管的微观组织和性能[J]. 材料研究学报, 2023, 37(9): 713-720.
[2] 刘瑞峰, 仙运昌, 赵瑞, 周印梅, 王文先. 钛合金/不锈钢复合板的放电等离子烧结技术制备及其性能[J]. 材料研究学报, 2023, 37(8): 581-589.
[3] 季雨辰, 刘树和, 张天宇, 查成. MXene在锂硫电池中应用的研究进展[J]. 材料研究学报, 2023, 37(7): 481-494.
[4] 秦鹤勇, 李振团, 赵光普, 张文云, 张晓敏. 固溶温度对GH4742合金力学性能及γ' 相的影响[J]. 材料研究学报, 2023, 37(7): 502-510.
[5] 王伟, 解泽磊, 屈怡珅, 常文娟, 彭怡晴, 金杰, 王快社. Graphene/SiO2 纳米复合材料作为水基润滑添加剂的摩擦学性能[J]. 材料研究学报, 2023, 37(7): 543-553.
[6] 史畅, 杜宇航, 赖利民, 肖思明, 郭宁, 郭胜锋. CrTaTi难熔中熵合金的力学性能和抗氧化性能[J]. 材料研究学报, 2023, 37(6): 443-452.
[7] 张藤心, 王函, 郝亚斌, 张建岗, 孙新阳, 曾尤. 基于界面氢键结构的石墨烯/聚合物复合材料的阻尼性能[J]. 材料研究学报, 2023, 37(6): 401-407.
[8] 邵萌萌, 陈招科, 熊翔, 曾毅, 王铎, 王徐辉. C/C-ZrC-SiC复合材料的Si2+ 离子辐照行为[J]. 材料研究学报, 2023, 37(6): 472-480.
[9] 李海龙, 牟娟, 王媛媛, 葛绍璠, 刘春明, 张海峰, 朱正旺. MnNiCoCrFe多孔高熵合金的电催化析氧性能[J]. 材料研究学报, 2023, 37(5): 332-340.
[10] 季洪梅, 王絮, 李小武. 贝壳珍珠质及交叉叠片结构体外类骨磷灰石生长的对比研究[J]. 材料研究学报, 2023, 37(4): 241-247.
[11] 张锦中, 刘晓云, 杨健茂, 周剑锋, 查刘生. 温度响应性双面纳米纤维的制备和性能[J]. 材料研究学报, 2023, 37(4): 248-256.
[12] 王刚, 杜雷雷, 缪自强, 钱凯成, 杜向博文, 邓泽婷, 李仁宏. 聚多巴胺改性碳纤维增强尼龙6复合材料的界面性能[J]. 材料研究学报, 2023, 37(3): 203-210.
[13] 林师峰, 徐东安, 庄艳歆, 张海峰, 朱正旺. TiZr基非晶/TC21双层复合材料的制备和力学性能[J]. 材料研究学报, 2023, 37(3): 193-202.
[14] 苗琪, 左孝青, 周芸, 王应武, 郭路, 王坦, 黄蓓. 304不锈钢纤维/ZL104铝合金复合泡沫的孔结构、力学、吸声性能及其机理[J]. 材料研究学报, 2023, 37(3): 175-183.
[15] 朱明星, 戴中华. SrSc0.5Nb0.5O3 改性BNT基无铅陶瓷的储能特性研究[J]. 材料研究学报, 2023, 37(3): 228-234.