Please wait a minute...
材料研究学报  2018, Vol. 32 Issue (11): 853-860    DOI: 10.11901/1005.3093.2017.766
  本期目录 | 过刊浏览 |
Cu含量对Al-Cu-Mn合金力学性能各向异性的影响
余芳1,3, 徐道芬2,3,4, 陈送义2,3, 陈康华1,2,3(), 王习锋1,3, 刘德博5, 马云龙5, 黄诚5, 鄢东洋5
1 中南大学 轻质高强结构材料重点实验室 长沙 410083
2 中南大学 轻合金研究院 长沙 410083
3 中南大学 有色金属先进结构材料与制造协同创新中心 长沙 410083
4 桂林航天工业学院 桂林 541004
5 北京宇航系统工程研究所 北京 100076
Effect of Cu Content on Anisotropy of Mechanical Property of Al-Cu-Mn Alloy
Fang YU1,3, Daofen XU2,3,4, Songyi CHEN2,3, Kanghua CHEN1,2,3(), Xifeng WANG1,3, Debo LIU5, Yunlong MA5, Cheng HUANG5, Dongyang YAN5
1 Science and Technology on High Strength Structural Materials Laboratory, Central South University, Changsha 410083, China
2 Light Alloy Research Institute, Central South University, Changsha 410083, China
3 Nonferrous Metal Oriented Advanced Structural Materials and Manufacturing Cooperative Innovation Center, Central South University, Changsha 410083, China
4 Guilin University of Aerospace Technology, Guilin 541104, China
5 Beijing Institute of Astronautical Systems Engineering, Beijing 100076, China
引用本文:

余芳, 徐道芬, 陈送义, 陈康华, 王习锋, 刘德博, 马云龙, 黄诚, 鄢东洋. Cu含量对Al-Cu-Mn合金力学性能各向异性的影响[J]. 材料研究学报, 2018, 32(11): 853-860.
Fang YU, Daofen XU, Songyi CHEN, Kanghua CHEN, Xifeng WANG, Debo LIU, Yunlong MA, Cheng HUANG, Dongyang YAN. Effect of Cu Content on Anisotropy of Mechanical Property of Al-Cu-Mn Alloy[J]. Chinese Journal of Materials Research, 2018, 32(11): 853-860.

全文: PDF(14373 KB)   HTML
摘要: 

采用室温力学拉伸、光学显微镜(OM)、扫描电镜(SEM)等手段,研究了Cu含量对Al-Cu-Mn铝合金力学性能各向异性的影响。结果表明:随着Cu含量(质量分数)由6.51%降低到5.41%Al-Cu-Mn铝合金中微米级Al2Cu相的数量显著减少,聚集排布的趋势减弱,使材料的延伸率提高、各向异性降低。其主要机理是,Cu含量较高时微米级Al2Cu相应力集中,导致Al2Cu相优先断裂且裂纹相互连通;Cu含量较低时,Al2Cu相断裂后裂纹未扩展而晶界发生断裂。微米级Al2Cu相沿各取向的分布差异,是力学性能各向异性的主要原因。

关键词 金属材料Al-Cu-Mn合金Cu含量各向异性    
Abstract

The effect of Cu-content on microstructure and fracture behavior of Al-Cu-Mn alloy was investigated by tensile test, optical microscope (OM) and scanning electron microscope (SEM). The results show that with the decrease of Cu-content from 6.51% to 5.41% (in mass fraction) the quantity and size of the coarse Al2Cu phase in the alloy is reduced, the elongation of the alloy increases and thus the anisotropy of the alloy is decreased. The main mechanism is that for the alloy with relatively high Cu-content, the formed micron Al2Cu phase causes stress concentration, which induces preferentially breakage of Al2Cu phase and then the formed cracks are interconnected. However, for the alloy with lower Cu-content, the cracks do not expand and connect with each other after the breakage of Al2Cu phase, while fracture may expand along grain boundaries. The difference in orientation distribution of micron phases of Al2Cu in the matrix of alloy may be the main reason for the anisotropy of mechanical properties.

Key wordsmetallic materials    Al-Cu-Mn alloy    Cu contents    anisotropy
收稿日期: 2017-12-27     
ZTFLH:  TG146  
基金资助:国家自然科学基金(U1637601),江苏省科技成果转化计划(BA2015075),国家重点研发计划(2016YFB0300801),国家自然科学基金重大科研仪器设备研制专项(51327902)
作者简介:

作者简介 余芳,女,1992年生,硕士生

Sample No. Cu Mn Zr V Fe Ti Al
1# 6.51 0.36 0.13 0.02 0.018 0.03 Bal.
2# 6.22 0.36 0.13 0.01 0.016 0.03 Bal.
3# 5.87 0.36 0.13 0.01 0.014 0.03 Bal.
4# 5.41 0.35 0.13 0.02 0.017 0.04 Bal.
表1  Al-Cu-Mn铝合金化学成分
图1  取样示意图
Alloys 6.51Cu 6.22Cu 5.87Cu 5.41Cu
δ / % Rm Rp δ / % Rm Rp δ / % Rm Rp δ / % Rm Rp
L 11.50 449.6 351.2 13.67 434.3 334.2 15.82 416.6 306.1 16.86 390.5 294.4
T 4.21 415.8 332.7 5.51 419.3 319.2 7.44 413.4 304.0 9.42 399.0 299.3
IPA/% 63.39 7.5 5.3 59.69 3.5 4.5 52.97 0.8 0.7 43.21 2.1 1.6
表2  合金拉伸力学性能及IPA
图2  不同Cu含量Al-Cu-Mn铝合金的显微组织
Alloy Direction Count Average size/μm %Area Difference/%
6.51Cu L-S 2340 13.55 9.27 3.66
T-S 1876 10.22 5.61
6.22Cu L-S 1227 8.10 3.11 1.02
T-S 974 5.42 2.09
5.87Cu L-S 1356 4.19 1.74 0.74
T-S 993 3.22 1.00
5.41Cu L-S 770 1.93 0.46 0.27
T-S 557 1.09 0.19
表3  合金中Al2Cu相数目、平均尺寸以及面积分数
图3  不同Cu含量合金试样断口形貌
图4  合金试样断口的能谱分析
图5  合金L/T向试样拉伸断裂后厚度方向的显微组织
图6  Al-Cu-Mn合金的等温(541℃)等Zr(Zr=0.13%)截面相图
图7  合金中残余第二相及能谱分析
[1] He W, Liu W, Long L H.Heavy Launch Vehicle and Its Application[J]. Missiles and Space Vehicles , 2011, (1): 1(何巍, 刘伟, 龙乐豪. 重型运载火箭及其应用探讨[J]. 导弹与航天运载技术, 2011, (1): 1)
[2] J. Craig McArthur, Bill Pannell. Foundation for heavy Lift- Early developments in the ares V launch vehicle [R]. AIAA, 2007
[3] Huang C, Kou S.Partially melted zone in Aluminum welds-liquation mechanism and directional solidification[J]. Welding Research, 2000, 79(5): 113
[4] Xu W F, Liu J H, Luan G H, et al.Microstructure and mechanical properties of friction stir welded joints in 2219-T6 aluminum alloy[J]. Materials & Design, 2009, 30(9): 3460
[5] Liu X, Wang G Q, Li S G, et al.Forecasts on Crucial Manufacturing Technology Develeopment of Heavy Lift Launch Vehicle[J]. Aerospace Manufacturing Technology, 2013, (1): 1(刘欣, 王国庆, 李曙光等.β重型运载火箭关键制造技术发展展望[J].β航天制造技术, 2013, (1): 1)
[6] Jabeen I, Ahmad R.A study of aging effects on hardness and tensile properties of 2219 aluminum alloy[C]. Pakistan: Curran Associates Inc, 2007, 1402
[7] Ma Z.Influence of cold deformation and aging on microstructure and properties of aluminum alloy 2219 [D]. Harbin: Harbin Institute of Technology, 2014(马征. 冷变形及时效对2219铝合金组织性能的影响规律 [D]. 哈尔滨: 哈尔滨工业大学, 2014)
[8] Zhou R R, He A G, Fang H C, et al.Effects of pre-deformation on microstructure and mechanical properties of 2219 aluminum alloy[J]. Transactions of Materials and Heat Treatment, 2016, 37(4): 46(周蓉蓉, 贺爱国, 方华婵等. 预变形量对2219铝合金的力学性能及显微组织影响[J]. 材料热处理学报, 2016, 37(4): 46)
[9] Wang H M, Yi Y P, Huang S Q.Influence of pre-deformation and subsequent ageing on the hardening behavior and microstructure of 2219 aluminum alloy forgings[J]. Journal of Alloys and Compounds, 2016, 685: 941
[10] Deschamps A, Bréchet Y.Nature and distribution of quench-induced precipitation in an Al-Zn-Mg-Cu Alloy[J]. Scripta Materialia, 1998, 39(11): 1517
[11] Dumont D, Deschamps A, Brechet Y.A model for predicting fracture mode and toughness in 7000 series aluminium alloys[J]. ActaMaterialia, 2004, 52(9): 2529
[12] Deschamps A, Bréchet Y, Necker C J, et al.Study of large strain deformation of dilute solid solutions of Al-Cu using channel-diecompression[J]. Materials Science & Engineering A, 1996, 207(2): 143
[13] Xing J, Chen K H, Chen S Y, et al.Effect of Cu Content on Microstructure and Properties of 2219 Aluminum Alloy Forgings and Its Welded Joints[J]. Journal of Aeronautical Materials, 2017, 37(3): 1(邢军, 陈康华, 陈送义等. Cu含量对2219铝合金锻件及其焊接接头组织与性能的影响[J]. 航空材料学报, 2017, 37(3): 1)
[14] Sun L, Luo J.Tensile Properties and Fracture Analysis of Cast A356 Aluminum Alloy[J]. Modern Manufacturing Technology and Equipment,2017, (4): 75)
[15] Li J H, Gao X X, Zhu J, et al.Texture and magnetostriction in rolled Fe-Ga based alloy[J]. Acta Metallurgica Sinica, 2008, 44(9): 1031(李纪恒, 高学绪, 朱洁等. 轧制Fe-Ga合金的织构及磁致伸缩[J]. 金属学报, 2008, 44(9): 1031)
[16] Liu C M, Jiang S N, Ding D Y, et al.Phase Atlas of Aluminum Alloy [M]. Changsha: Central South University Press, 2014.(刘楚明, 蒋树农, 丁道云等. 铝合金相图集 [M]. 长沙: 中南大学出版社, 2014)
[17] Liu G, Zhang G J, Ding X D, et al.A model for fracture toughness of high strength aluminum alloys containing second particles of various sized scales[J]. The Chinese Journal of Nonferrous Metals, 2002, 12(4): 706(刘刚, 张国君, 丁向东等. 含有不同尺度量级第二相的高强铝合金断裂韧性模型[J]. 中国有色金属学报, 2002, 12(4): 706)
[18] Rao S R K, Reddy G M, Rao K S, et al. Reasons for superior mechanical and corrosion properties of 2219 aluminum alloy electron beam welds[J]. Materials Characterization, 2005, 55(4-5): 345
[19] Li J, Song R G, Chen X M, et al.Effects of Solid Solution Treatment on Microstructure and Mechanical Properties of 7050 High Strength Aluminum Alloy[J]. Chinese Journal of Rare Metals, 2009, 33(4): 494(李杰, 宋仁国, 陈小明等. 固溶处理对7050高强铝合金显微组织和机械性能的影响[J]. 稀有金属, 2009, 33(4): 494)
[1] 毛建军, 富童, 潘虎成, 滕常青, 张伟, 谢东升, 吴璐. AlNbMoZrB系难熔高熵合金的Kr离子辐照损伤行为[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] 赵政翔, 廖露海, 徐芳泓, 张威, 李静媛. 超级奥氏体不锈钢24Cr-22Ni-7Mo-0.4N的热变形行为及其组织演变[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] 幸定琴, 涂坚, 罗森, 周志明. C含量对VCoNi中熵合金微观组织和性能的影响[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] 欧阳康昕, 周达, 杨宇帆, 张磊. LPSOMg-Y-Er-Ni合金的组织和拉伸性能[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] 徐利君, 郑策, 冯小辉, 黄秋燕, 李应举, 杨院生. 定向再结晶对热轧态Cu71Al18Mn11合金的组织和超弹性性能的影响[J]. 材料研究学报, 2023, 37(8): 571-580.
[8] 熊诗琪, 刘恩泽, 谭政, 宁礼奎, 佟健, 郑志, 李海英. 固溶处理对一种低偏析高温合金组织的影响[J]. 材料研究学报, 2023, 37(8): 603-613.
[9] 刘继浩, 迟宏宵, 武会宾, 马党参, 周健, 徐辉霞. 喷射成形M3高速钢热处理过程中组织的演变和硬度偏低问题[J]. 材料研究学报, 2023, 37(8): 625-632.
[10] 由宝栋, 朱明伟, 杨鹏举, 何杰. 合金相分离制备多孔金属材料的研究进展[J]. 材料研究学报, 2023, 37(8): 561-570.
[11] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[12] 王昊, 崔君军, 赵明久. 镍基高温合金GH3536带箔材的再结晶与晶粒长大行为[J]. 材料研究学报, 2023, 37(7): 535-542.
[13] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.
[14] 秦鹤勇, 李振团, 赵光普, 张文云, 张晓敏. 固溶温度对GH4742合金力学性能及γ' 相的影响[J]. 材料研究学报, 2023, 37(7): 502-510.
[15] 刘天福, 张滨, 张均锋, 徐强, 宋竹满, 张广平. 缺口应力集中系数对TC4 ELI合金低周疲劳性能的影响[J]. 材料研究学报, 2023, 37(7): 511-522.