Please wait a minute...
材料研究学报  2018, Vol. 32 Issue (11): 827-833    DOI: 10.11901/1005.3093.2017.582
  本期目录 | 过刊浏览 |
Cr含量对激光增材制造12CrNi2合金钢的组织结构的影响
董志宏1(), 亢红伟2, 谢玉江1, 迟长泰1, 彭晓3
1 中国科学院金属研究所 金属腐蚀与防护实验室 沈阳 110016
2 中国科学技术大学材料科学与工程学院 合肥 230026
3 南昌航空大学材料科学与工程学院 南昌 330063
Effect of Cr-Content on Microstructure of 12CrNi2 Alloy Steel Prepared by Laser Additive Manufacturing
Zhihong DONG1(), Hongwei KANG2, Yujiang XIE1, Changtai CHI1, Xiao PENG3
1 Laboratory for Corrosion and Protection, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
2 College of Material Science and Engineering, University of Science and Technology of China, Hefei 230026, China
3 School of Materials Science and Engineering, Nanchang Hangkong University, Nanchang 330063, China
引用本文:

董志宏, 亢红伟, 谢玉江, 迟长泰, 彭晓. Cr含量对激光增材制造12CrNi2合金钢的组织结构的影响[J]. 材料研究学报, 2018, 32(11): 827-833.
Zhihong DONG, Hongwei KANG, Yujiang XIE, Changtai CHI, Xiao PENG. Effect of Cr-Content on Microstructure of 12CrNi2 Alloy Steel Prepared by Laser Additive Manufacturing[J]. Chinese Journal of Materials Research, 2018, 32(11): 827-833.

全文: PDF(5278 KB)   HTML
摘要: 

对商用12CrNi2合金钢粉末进行激光增材制造时发现,在沉积态合金钢内部产生了大量的孔洞。这种孔洞的形成,主要与溶池中的O与C反应生成的气泡有关。合金钢粉末中增加Cr量后,它因与O亲和力大而在溶池中优先“捕捉”O析出Cr2O3,有效地抑制了成形合金钢中孔洞的形成;Cr2O3的析出使成形合金钢铁素体和奥氏体的组织细化,提高了合金钢的显微硬度。

关键词 金属材料组织结构激光增材制造Cr含量合金钢    
Abstract

12CrNi2 alloy steel has been prepared by means of laser additive manufacturing (LAM) using a commercial alloy steel powder. The results show that the LAMed alloy steel contains a large number of pores intrinsically associated with the reaction of O and C, which form gases in molten pool of the laser melting alloy steel powder. The pore formation can be highly suppressed by adding into the steel powder with small amounts of Cr, because it preferentially reacts with O to form Cr2O3 and consequently prevents the gases formation in the molten pool. The Cr2O3 formation also refines the ferrite and the austenite phases of the LAMed alloy steel and increases its hardness.

Key wordsmetallic materials    microstructure    laser additive manufacturing    Cr content    alloy steel
收稿日期: 2017-10-10     
ZTFLH:  TG142.1  
基金资助:国家重点研发计划(2016YFB1100203)
作者简介:

作者简介 董志宏,男,1978年生,博士

C Ni Cr O Fe
0.085 2.42 0.55 0.53 Bal.
表1  12CrNi2合金钢粉末的化学成分(质量分数,%)
图1  LMD成形过程的示意图
图2  12CrNi2合金钢粉末的表面和截面形貌
O Fe Cr Ni Si
Atomic fraction/% 59.09 37.12 0.3 0.38 3.11
Mass fraction/% 30.07 65.95 0.49 0.71 2.78
表2  12CrNi2合金钢颗粒表面氧化物的EDS分析结果
图3  原始(a)和增加4%Cr(b)的12CrNi2合金钢粉末LMD成形后的截面SEM像
图4  在激光成形过程中熔池中可能发生的化学反应的ΔG0随着温度的变化
图5  LMD合金钢的背散射像
图6  富Cr颗粒的TEM像及其相应的衍射图和元素分布图
图7  原始粉末LMD合金钢的金相组织OM像、BEI像及C元素面分布图以及主要组织及岛状组织的选区电子衍射图
图8  在Cr含量不同的条件下成形合金钢的XRD图谱
图9  Cr含量分别增加2%、3%、4%时成形合金钢的金相组织OM像
图10  在Cr量不同的条件下成形合金钢的显微硬度
[1] Murr L E, Gaytan S M, Ramirez D A, et al.Metal fabrication by additive manufacturing using laser and electron beam melting technologies[J]. J. Mater. Sci. Technol., 2012, 20: 1
[2] Popovich V A, Borisov E V, Popovich A A, et al.Functionally graded Inconel718 processed by additive manufacturing: Crystallographic texture, anisotropy of microstructure and mechanical properties[J]. Materials Design, 2017, 114: 441
[3] Elahinia M, Moghaddam N S, Andani M T, et al.Fabrication of NiTi through additive manufacturing: A review[J]. Prog. Mater. Sci., 2016, 83: 630
[4] Hagedorn Y.Laser additive manufacturing of ceramic components: Materials, processes, and mechanisms[J]. Laser Additive Manufacturing, 2017: 163
[5] Lin X, Huang W D.Laser additive manufacturing of high-performance metal components[J]. Science China: Information Sciences, 2015, 45: 1111(林鑫, 黄卫东. 高性能金属构件的激光增材制造[J]. 中国科学: 信息科学, 2015, 45: 1111)
[6] Wang H M, Zhang S Q, Wang X M.Progress and challenges of laser Direct Manufacturing of large Titanium structural components[J]. Chinese Journal of Lasers, 2009, 36: 3204(王华明, 张述泉, 王向明. 大型钛合金结构件激光直接制造的进展与挑战[J]. 中国激光, 2009, 36: 3204)
[7] Yang Q, Lu Z L, Huang F X, et al.Research on status and development trend of laser additive manufacturing[J]. Aeron Manuf. Technol., 2012, 12: 26(杨强, 鲁中良, 黄福享等. 激光增材制造技术的研究现状及发展趋势[J]. 航空制造技术, 2012, 12: 26)
[8] Liu R, Wang Z, Sparks T, et al.Aerospace applications of laser additive manufacturing[J]. Laser Additive Manufacturing, 2017: 351
[9] Wu C F, Ma M X, Liu W J, et al.Laser cladding in-situ carbide particle reinforced Fe-based composite coatings with rare earth oxide addition[J]. Journal of Rare Earths, 2009, 27(6): 997
[10] Zhou C Y, Zhao S S, Wang Y B, et al.Mitigation of pores generation at overlapping zone during laser cladding[J]. J. Mater. Process. Technol., 2015, 216: 269
[11] Qi Y T, Cao R P, Li Z X.Forming character and mechanism of cracks for Fe-based alloy coatings by laser cladding[J]. Applied Laser, 2015, 35(6): 639(齐勇田, 曹润平, 栗卓新. 激光熔覆铁基合金涂层开裂行为及其产生机制[J]. 应用激光, 2015, 35(6): 639)
[12] Wang Y B, Zhao S S, Gao W Y, et al.Microstructure and properties of laser cladding FeCrBSi composite powder coatings with higher Cr content[J]. J. Mater. Process. Technol., 2014, 214: 899
[13] LePera F S. Improved etching technique to emphasize martensite and bainite in high-strength dual-phase steel[J]. JOM, 1980, 32: 38
[14] Girault E, Jacques P, Harlet Ph, et al.Metallographic methods for revealing the multiphase microstructure of TRIP-assisted steels[J]. Materials Characterization, 1998, 40: 111
[15] Cai X W, Chen X Y, Zhou Q, et al.Color metallographic quantitative analysis method of TRIP steel microstructure[J]. Heat Treatment of Metals, 2014, 39(12): 139(蔡晓文, 陈兴元, 周强等. TRIP钢彩色金相组织定量分析方法[J]. 金属热处理, 2014, 39(12): 139)
[16] Barin I.Thermochemical Data of Pure Substances[M]. Third Edition, 1989
[17] Yang Q M, Kang M K.Character of carbon depleted regions in undercooled austenite and thermodynamics of bainitic transformation[J]. Acta Metall. Sin., 1990, 26(4): A235(杨全民, 康沫狂. 奥氏体贫碳区性质与贝氏体相变热力学[J]. 金属学报, 1990, 26(4): A235)
[18] Qiao Z X, Liu Y C, Yu L M, et al.Formation mechanism of granular bainite in a 30CrNi3MoV steel[J]. J. Alloy. Compd., 2009, 475: 560
[19] Jiang Z H, Wang P, Li D Z, et al.effect of tempering temperature on the microstructure and mechanical properties of granular bainite in 2.25Cr-1Mo-0.25V steel[J]. Acta Metall. Sin., 2015, 51: 925(蒋中华, 王培, 李殿中等. 回火温度对2.25Cr-1Mo-0.25V钢粒状贝氏体显微组织和力学性能的影响[J]. 金属学报, 2015, 51: 925)
[1] 毛建军, 富童, 潘虎成, 滕常青, 张伟, 谢东升, 吴璐. AlNbMoZrB系难熔高熵合金的Kr离子辐照损伤行为[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] 赵政翔, 廖露海, 徐芳泓, 张威, 李静媛. 超级奥氏体不锈钢24Cr-22Ni-7Mo-0.4N的热变形行为及其组织演变[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] 幸定琴, 涂坚, 罗森, 周志明. C含量对VCoNi中熵合金微观组织和性能的影响[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] 欧阳康昕, 周达, 杨宇帆, 张磊. LPSOMg-Y-Er-Ni合金的组织和拉伸性能[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] 徐利君, 郑策, 冯小辉, 黄秋燕, 李应举, 杨院生. 定向再结晶对热轧态Cu71Al18Mn11合金的组织和超弹性性能的影响[J]. 材料研究学报, 2023, 37(8): 571-580.
[8] 熊诗琪, 刘恩泽, 谭政, 宁礼奎, 佟健, 郑志, 李海英. 固溶处理对一种低偏析高温合金组织的影响[J]. 材料研究学报, 2023, 37(8): 603-613.
[9] 刘继浩, 迟宏宵, 武会宾, 马党参, 周健, 徐辉霞. 喷射成形M3高速钢热处理过程中组织的演变和硬度偏低问题[J]. 材料研究学报, 2023, 37(8): 625-632.
[10] 由宝栋, 朱明伟, 杨鹏举, 何杰. 合金相分离制备多孔金属材料的研究进展[J]. 材料研究学报, 2023, 37(8): 561-570.
[11] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[12] 王昊, 崔君军, 赵明久. 镍基高温合金GH3536带箔材的再结晶与晶粒长大行为[J]. 材料研究学报, 2023, 37(7): 535-542.
[13] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.
[14] 秦鹤勇, 李振团, 赵光普, 张文云, 张晓敏. 固溶温度对GH4742合金力学性能及γ' 相的影响[J]. 材料研究学报, 2023, 37(7): 502-510.
[15] 刘天福, 张滨, 张均锋, 徐强, 宋竹满, 张广平. 缺口应力集中系数对TC4 ELI合金低周疲劳性能的影响[J]. 材料研究学报, 2023, 37(7): 511-522.