Please wait a minute...
材料研究学报  2018, Vol. 32 Issue (10): 759-766    DOI: 10.11901/1005.3093.2017.580
  研究论文 本期目录 | 过刊浏览 |
Fe3O4/PAMAM/ZnO/TiO2核-壳结构纳米颗粒的逐层构建及其光催化性能
丛日敏1(), 于怀清1, 罗运军2, 李蛟1, 王卫伟1, 李秋红1, 孙武珠1, 司维蒙1
1 山东理工大学材料科学与工程学院 淄博 255049
2 北京理工大学材料科学与工程学院 北京 100081
Layer-by-Layer Construction and Photocatalytic Properties of Fe3O4/PAMAM/ZnO/TiO2 Core-shell Nanoparticles
Rimin CONG1(), Huaiqing YU1, Yunjun LUO2, Jiao LI1, Weiwei WANG1, Qiuhong LI1, Wuzhu SUN1, Weimeng SI1
1 School of Materials Science and Engineering, Shandong University of Technology, Zibo 255049, China
2 School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China
引用本文:

丛日敏, 于怀清, 罗运军, 李蛟, 王卫伟, 李秋红, 孙武珠, 司维蒙. Fe3O4/PAMAM/ZnO/TiO2核-壳结构纳米颗粒的逐层构建及其光催化性能[J]. 材料研究学报, 2018, 32(10): 759-766.
Rimin CONG, Huaiqing YU, Yunjun LUO, Jiao LI, Weiwei WANG, Qiuhong LI, Wuzhu SUN, Weimeng SI. Layer-by-Layer Construction and Photocatalytic Properties of Fe3O4/PAMAM/ZnO/TiO2 Core-shell Nanoparticles[J]. Chinese Journal of Materials Research, 2018, 32(10): 759-766.

全文: PDF(3943 KB)   HTML
摘要: 

以聚酰胺-胺(PAMAM)树形分子为模板和隔离层采用水热法逐层构建了Fe3O4/PAMAM/ZnO/TiO2和Fe3O4/PAMAM/TiO2核-壳结构纳米颗粒,用HRTEM、EDS、XRD、SQUID和UV-Vis等手段对其结构和性能进行了表征。结果表明,这两种颗粒具有完整清晰的核-壳结构,磁核与壳层均由尺寸小于5 nm的颗粒聚集而成,具有超顺磁性和较高的MB吸附率。PAMAM隔离层降低了Fe3O4核与TiO2壳接触面积,但是残留在界面处的微量Fe2+电子向壳层迁移,导致壳层能隙变窄、吸收光谱红移以及迁入电子与壳层光生空穴复合,使Fe3O4/PAMAM/TiO2的催化活性降低。Fe3O4/PAMAM/ZnO/TiO2中更厚的PAMAM隔离层和ZnO层阻隔了Fe2+电子向TiO2层迁移,并且ZnO/TiO2界面异质结构有利于光生电子-空穴对的分离,界面的新电子态使颗粒吸收光谱进一步红移,提高了对可见光的利用率和催化活性。5次磁性回收循环使用后,Fe3O4/PAMAM/ZnO/TiO2的磁性回收率和MB降解率分别为93.8%和90.8%。

关键词 无机非金属材料TiO2ZnOFe3O4核-壳结构光催化磁性回收    
Abstract

Core-shell nanoparticles of Fe3O4/PAMAM/ZnO/TiO2 and Fe3O4/PAMAM/TiO2 were prepared by hydrothermal method with polyamidoamine (PAMAM) as template and isolation layer, while the construction mechanism and performance of which were investigated. The mophology, size, structure and proporties of these particles were characterized by HRTEM, EDS, XRD, SQUID and UV-Vis measurements. The results show that core-shell nanoparticles present clearly structure composed of magnetic core and shell, which were stacked with nanoparticles less than 5 nm in diameter, leading to high saturation magnetization and MB-adsorption rates. Althouth the interfacial contact area of core and shell was reduced by PAMAM isolation layer, trace electrons Fe2+ at the inerface could migrate into the TiO2 shell through the residual interfacial contact area, and then combine with the holes in shell, which brought the narrowing of shell band gap and the red-shifting of the absorption spectrum and thus the decreasing of catalytic activity. As for Fe3O4/PAMAM/ZnO/TiO2, the thicker PAMAM and ZnO layers cutted off the way of electrons migration to the TiO2 shell. The heterogeneous structure of ZnO/TiO2 facilitated the separation of the photogenerated electron hole pairs in shell. The new interface electronic states brought further red-shifting of the the absorption spectrum, higher utilization ratio of visible light, and therewith resulted in higher catalytic activity. The magnetic recovery and MB-degradation rate of Fe3O4/PAMAM/ZnO/TiO2 are 93.8% and 90.8% respectively after being recyced for 5 times.

Key wordsinorganic non-metallic materials    TiO2    ZnO    Fe3O4    core-shell    photocatalyst    magnetically recyclable
收稿日期: 2017-10-09     
ZTFLH:  O643  
基金资助:山东省高等学校科技计划项目(J11LD12),山东省自然科学基金(ZR2011BL006,ZR2010BM011,ZR2015BM022),国家自然科学基金青年基金(21706148)和山东理工大学青年教师发展支持计划
作者简介:

作者简介 丛日敏,女,1975年生,副教授

图1  纳米颗粒的XRD谱图
图2  纳米颗粒的HRTEM照片
图3  Fe3O4/PAMAM/ZnO/TiO2核-壳结构纳米颗粒的制备流程
图4  纳米颗粒的EDS谱图
图5  纳米颗粒的UV-Vis光谱和(Ahν)2-hν关系曲线
图6  纳米颗粒的室温磁滞回线,内插图为原点部分放大图
图7  核-壳结构纳米颗粒的吸附和降解MB曲线
图8  ZnO/TiO2复合壳层的能带结构
图9  重复使用的核-壳结构纳米颗粒的磁性回收率和光催化活性
[1] Sun S, Chang X, Li X, et al.Synthesis of N-doped ZnO nanoparticles withimproved photocatalytical activity[J]. Ceram. Int. 2013, 39: 5197
[2] Siuzdak K, Szkoda M, Sawczak M, et al.Novel nitrogen precursors for electrochemically driven doping of titania nanotubes exhibiting enhanced photoactivity[J]. New J. Chem. 2015, 39: 2741
[3] Chen Y, Wang L, Wang W, Cao M.Synthesis of Se-doped ZnO nanoplates with enhanced photoelectrochemical and photocatalytic properties[J]. Mater. Chem. Phys. 2017, 199: 416
[4] Gombac V, De-Rogatis L, Gasparotto A, et al.TiO2 nanopowders dopedwith boron and nitrogen for photocatalytic applications[J]. Chem. Phys. 2007, 339: 111
[5] Bumajdad A, Madkour M.Understanding the superior photocatalytic activityof noble metals modified titania under UV and visible light irradiation[J]. Phys.Chem. Chem. Phys. 2014, 16: 7146
[6] Zhang P, Shao C, Li X, et al.In situ assembly of well-dispersed Au nanoparticles on TiO2/ZnO nanofibers: a three-waysynergistic heterostructure with enhanced photocatalytic activity[J]. J. Hazard.Mater. 2012, 237: 331
[7] Li L, Zhang X, Zhang W, et al.Microwave-assistedsynthesis of nanocomposite Ag/ZnO-TiO2 and photocatalytic degradation Rhodamine B with different modes[J]. Colloid Surf. A. 2014, 457: 134
[8] Zeng H, Liu P, Cai W, et al.Controllable Pt/ZnO porous nanocages with improved photocatalytic activity[J]. J. Phys. Chem. C, 2008, 112: 19620
[9] Gao X P, Guo Z L, Zhou Y N, et al.Catalytic Performance and characterization of anatase TiO2 supported Pd catalysts for the selective hydrogenation of acetylene[J]. Acta Phys.-Chim. Sin. 2017, 33(3): 602(高晓平, 郭章龙, 周亚男, 敬方梨, 储伟. 锐钛矿型TiO2担载的Pd催化剂用于乙炔选择加氢的催化性能及其表征[J]. 物理化学学报, 2017, 33(3): 602)
[10] Volokh M, Diab M, Magen O, et al.Coating and enhanced photocurrent of vertically aligned zinc oxide nanowire arrays with metal sulfide materials[J]. ACS Appl. Mater.Interfaces. 2014, 6: 13594
[11] Luo J, Ma L, He T, et al.TiO2/(CdS, CdSe, CdSeS) nanorod heterostructures and photoelectrochemical properties[J]. J. Phys.Chem. C 2012, 16: 11956
[12] Zhang C, Wu Z J, Liu J J, et al.Preparation of MoS2/TiO2 composite catalyst and its photocatalytic hydrogen production activity under UV irradiation[J]. Acta Phys.-Chim. Sin. 2017, 33(7): 1492(张驰, 吴志娇, 刘建军等. MoS2/TiO2 复合催化剂的制备及其在紫外光下的光催化制氢活性[J]. 物理化学学报, 2017, 33(7): 1492)
[13] Marschall R.Semiconductor composites: strategies for enhancing chargecarrier separation to improve photocatalytic activity[J]. Adv. Funct. Mater. 2014, 24: 2421
[14] Miller D R, Akbar S A, Morris P A.Nanoscale metal oxide-basedheterojunctions for gas sensing: a review[J]. Sensor. Actuator. B. 2014, 204: 250
[15] Chen Y, Wang L, Wang W, Cao M.Enhanced photoelectrochemical properties of ZnO/ZnSe/CdSe/Cu2-xSe core-shell nanowire arrays fabricated by ion-replacement method[J]. Appl. Catal. B-Environ. 2017, 209: 110
[16] Xiao F X.Construction of highly ordered ZnO-TiO2 nanotube arrays (ZnO/TNTs) heterostructure for photocatalytic application[J]. ACS Appl. Mater.Interfaces, 2012, 4: 7055
[17] Shaheen B S, Salem H G, El-Sayed M A, et al. Thermal/electrochemical growth and characterization of one-dimensional ZnO/TiO2 hybrid nanoelectrodes for solar fuel production[J]. J. Phys. Chem. C, 2013, 117: 18502
[18] Park J Y, Choi S W, Lee J W, et al.Synthesis and gas sensingproperties of TiO2-ZnO core-shell nanofibers[J]. J. Am. Ceram. Soc. 2009, 92: 2551
[19] Chang J, Kuga Y, Mora-Sero Y, et al.High reduction of interfacial charge recombination in colloidalquantum dot solar cells by metal oxide surface passivation[J]. Nanoscale, 2015, 7: 5446
[20] Shao D, Sun H, Xin G, et al.High quality ZnO-TiO2 core-shell nanowires for efficient ultraviolet sensing[J]. Appl. Surf. Sci. 2014, 314: 872
[21] Pan K, Dong Y, Zhou W, et al.Facilefabrication of hierarchical TiO2 nanobelt/ZnO nanorod heterogeneous nanostructure: an efficient photoanode for water splitting[J]. ACS Appl. Mater.Interfaces, 2013, 5: 8314
[22] Wang L, Liu S, Wang Z, et al.Piezotronic effect enhanced photocatalysis in strained anisotropic ZnO/TiO2 nanoplatelets viathermal stress[J]. ACS Nano. 2016, 10: 2636
[23] Kwiatkowski M, Bezverkhyy I, Skompska M.ZnO nanorods covered with aTiO2 layer: simple sol-gel preparation, and optical, photocatalytic andphotoelectrochemical properties[J]. J. Mater. Chem A. 2015, 3: 12748
[24] Watson S, Beydoun D, Amal R S.Synthesis of a novel magnetic photocatalyst by direct deposition of nanosized TiO2 crystals onto a magnetic core[J]. J Photoch Photobio A: Chem, 2002, 148: 303
[25] Gao Y, Chen B, Li H, et al.Preparation and characterization of a magnetically separated photocatalyst and its catalytic properties[J]. Mater Chem Phys, 2003, 80: 348
[26] Fu W, Yang H, Li M, et al.Anatase TiO2 nanolayer coating on cobalt ferrite nanoparticles for nagnetic photocatalyst[J]. Mater. Lett. 2005, 59: 3530
[27] Fu W, Yang H, Chang L, et al.Anatase TiO2 nanolayer coating on strontium ferrite nanoparticles for magnetic photocatalyst[J]. Colloid Surfaces A, 2006, 289: 47
[28] Fu W, Yang H, Li M, et al.Preparation and photocatalytic characteristics of core-shell structure TiO2/BaFe12O19 nanoparticles[J]. Mater. Lett., 2006, 60: 2723
[29] Chung Y S, Park S B, Kang D W.Magnetically separable titania-coalted nickel ferrite photocatalyst[J]. Mater. Chem. Phy. 2004, 86: 375
[30] Ambashta R D, Sillanpaa M.Water purification using magnetic assistance: a review[J]. J. Hazard. Mater., 2010, 180: 38
[31] Abramson S, Srithammavanh L, Siaugue J-M, et al.Nanometric core-shell-shell γ-Fe2O3/SiO2/TiO2 particle[J]. J. Nanopart. Res. 2009, 11: 459
[32] Song X F, Gao L.Fabrication of bifunctional titania/silica-coated magnetic spheres and their photocatalytic activities[J]. J. Am. Ceram. Soc., 2007, 90: 4015
[33] Zhang Q, Meng G, Wu J, et al.Study on enhanced photocatalytic activity of magnetically recoverable Fe3O4@C@TiO2 nanocomposites with core-shell nanostructure[J]. Opt. Mater. 2015, 46: 52
[34] Cong R M, Luo Y J, Yu H Q.Effect of polymer templates on the preparation and photocatalytic activity of CdS quantum dots[J]. Acta Chimica Sinica, 2010, 68: 1971(丛日敏, 罗运军, 于怀清. 高分子模板对CdS量子点制备及其光催化性能的影响[J]. 化学学报, 2010, 68(19): 1971)
[35] Stefan M, Pana O, Leostean C, et al.Synthesis and characterization of Fe3O4-TiO2 core-shell nanoparticles[J]. J. Appl. Phy. 2014, 116: 114312
[36] Kwiatkowski M, Chassagnon R, Heintz O, et al.Improvement of photocatalytic and photoelectrochemical activity of ZnO/TiO2 core/shell system through additional calcination: Insight into the mechanism[J]. Appl. Catal. B-Environ., 2017, 204: 200
[37] Ramirez-Ortega D, Melendez A M, Acevedo-Pena P, et al.Semiconducting properties of ZnO/TiO2 composites by electrochemical measurements and their relationship with photocatalytic activity[J]. Electrochim. Acta, 2014, 140: 541
[38] Zheng X, Li D, Li X, et al.Construction of ZnO/TiO2 photonic crystal heterostructures for enhanced photocatalytic properties[J]. Appl. Catal., B 2015, 168: 408
[39] Ramos P G, Flores E, Sanchez L A, et al.Enhanced photoelectrochemical performance and photocatalytic activity of ZnO/TiO2 nanostructures fabricated by an electrostatically modified electrospinning[J]. Appl. Surf. Sci., 2017, 426: 844
[1] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[2] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[3] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[4] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.
[5] 李延伟, 罗康, 姚金环. Ni(OH)2 负极材料的十二烷基硫酸钠辅助制备及其储锂性能[J]. 材料研究学报, 2023, 37(6): 453-462.
[6] 余谟鑫, 张书海, 朱博文, 张晨, 王晓婷, 鲍佳敏, 邬翔. N掺杂生物炭的制备及其对Co2+ 的吸附性能[J]. 材料研究学报, 2023, 37(4): 291-300.
[7] 朱明星, 戴中华. SrSc0.5Nb0.5O3 改性BNT基无铅陶瓷的储能特性研究[J]. 材料研究学报, 2023, 37(3): 228-234.
[8] 刘志华, 岳远超, 丘一帆, 卜湘, 阳涛. g-C3N4/Ag/BiOBr复合材料的制备及其光催化还原硝酸盐氮[J]. 材料研究学报, 2023, 37(10): 781-790.
[9] 周毅, 涂强, 米忠华. 制备方法对磷酸盐微晶玻璃结构和性能的影响[J]. 材料研究学报, 2023, 37(10): 739-746.
[10] 谢锋, 郭建峰, 王海涛, 常娜. ZnO/CdS/Ag复合光催化剂的制备及其催化和抗菌性能[J]. 材料研究学报, 2023, 37(1): 10-20.
[11] 余超, 邢广超, 吴郑敏, 董博, 丁军, 邸敬慧, 祝洪喜, 邓承继. 亚微米Al2O3 对重结晶碳化硅的作用机制[J]. 材料研究学报, 2022, 36(9): 679-686.
[12] 方向明, 任帅, 容萍, 刘烁, 高世勇. 自供能Ag/SnSe纳米管红外探测器的制备和性能研究[J]. 材料研究学报, 2022, 36(8): 591-596.
[13] 李福禄, 韩春淼, 高嘉望, 蒋健, 许卉, 李冰. 氧化石墨烯的变温发光[J]. 材料研究学报, 2022, 36(8): 597-601.
[14] 朱晓东, 夏杨雯, 喻强, 杨代雄, 何莉莉, 冯威. Cu掺杂金红石型TiO2 的制备及其光催化性能[J]. 材料研究学报, 2022, 36(8): 635-640.
[15] 熊庭辉, 蔡文汉, 苗雨, 陈晨龙. ZnO纳米棒阵列和薄膜的同步外延生长及其光电化学性能[J]. 材料研究学报, 2022, 36(7): 481-488.