|
|
Fe3O4/PAMAM/ZnO/TiO2核-壳结构纳米颗粒的逐层构建及其光催化性能 |
丛日敏1( ), 于怀清1, 罗运军2, 李蛟1, 王卫伟1, 李秋红1, 孙武珠1, 司维蒙1 |
1 山东理工大学材料科学与工程学院 淄博 255049 2 北京理工大学材料科学与工程学院 北京 100081 |
|
Layer-by-Layer Construction and Photocatalytic Properties of Fe3O4/PAMAM/ZnO/TiO2 Core-shell Nanoparticles |
Rimin CONG1( ), Huaiqing YU1, Yunjun LUO2, Jiao LI1, Weiwei WANG1, Qiuhong LI1, Wuzhu SUN1, Weimeng SI1 |
1 School of Materials Science and Engineering, Shandong University of Technology, Zibo 255049, China 2 School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China |
引用本文:
丛日敏, 于怀清, 罗运军, 李蛟, 王卫伟, 李秋红, 孙武珠, 司维蒙. Fe3O4/PAMAM/ZnO/TiO2核-壳结构纳米颗粒的逐层构建及其光催化性能[J]. 材料研究学报, 2018, 32(10): 759-766.
Rimin CONG,
Huaiqing YU,
Yunjun LUO,
Jiao LI,
Weiwei WANG,
Qiuhong LI,
Wuzhu SUN,
Weimeng SI.
Layer-by-Layer Construction and Photocatalytic Properties of Fe3O4/PAMAM/ZnO/TiO2 Core-shell Nanoparticles[J]. Chinese Journal of Materials Research, 2018, 32(10): 759-766.
[1] | Sun S, Chang X, Li X, et al.Synthesis of N-doped ZnO nanoparticles withimproved photocatalytical activity[J]. Ceram. Int. 2013, 39: 5197 | [2] | Siuzdak K, Szkoda M, Sawczak M, et al.Novel nitrogen precursors for electrochemically driven doping of titania nanotubes exhibiting enhanced photoactivity[J]. New J. Chem. 2015, 39: 2741 | [3] | Chen Y, Wang L, Wang W, Cao M.Synthesis of Se-doped ZnO nanoplates with enhanced photoelectrochemical and photocatalytic properties[J]. Mater. Chem. Phys. 2017, 199: 416 | [4] | Gombac V, De-Rogatis L, Gasparotto A, et al.TiO2 nanopowders dopedwith boron and nitrogen for photocatalytic applications[J]. Chem. Phys. 2007, 339: 111 | [5] | Bumajdad A, Madkour M.Understanding the superior photocatalytic activityof noble metals modified titania under UV and visible light irradiation[J]. Phys.Chem. Chem. Phys. 2014, 16: 7146 | [6] | Zhang P, Shao C, Li X, et al.In situ assembly of well-dispersed Au nanoparticles on TiO2/ZnO nanofibers: a three-waysynergistic heterostructure with enhanced photocatalytic activity[J]. J. Hazard.Mater. 2012, 237: 331 | [7] | Li L, Zhang X, Zhang W, et al.Microwave-assistedsynthesis of nanocomposite Ag/ZnO-TiO2 and photocatalytic degradation Rhodamine B with different modes[J]. Colloid Surf. A. 2014, 457: 134 | [8] | Zeng H, Liu P, Cai W, et al.Controllable Pt/ZnO porous nanocages with improved photocatalytic activity[J]. J. Phys. Chem. C, 2008, 112: 19620 | [9] | Gao X P, Guo Z L, Zhou Y N, et al.Catalytic Performance and characterization of anatase TiO2 supported Pd catalysts for the selective hydrogenation of acetylene[J]. Acta Phys.-Chim. Sin. 2017, 33(3): 602(高晓平, 郭章龙, 周亚男, 敬方梨, 储伟. 锐钛矿型TiO2担载的Pd催化剂用于乙炔选择加氢的催化性能及其表征[J]. 物理化学学报, 2017, 33(3): 602) | [10] | Volokh M, Diab M, Magen O, et al.Coating and enhanced photocurrent of vertically aligned zinc oxide nanowire arrays with metal sulfide materials[J]. ACS Appl. Mater.Interfaces. 2014, 6: 13594 | [11] | Luo J, Ma L, He T, et al.TiO2/(CdS, CdSe, CdSeS) nanorod heterostructures and photoelectrochemical properties[J]. J. Phys.Chem. C 2012, 16: 11956 | [12] | Zhang C, Wu Z J, Liu J J, et al.Preparation of MoS2/TiO2 composite catalyst and its photocatalytic hydrogen production activity under UV irradiation[J]. Acta Phys.-Chim. Sin. 2017, 33(7): 1492(张驰, 吴志娇, 刘建军等. MoS2/TiO2 复合催化剂的制备及其在紫外光下的光催化制氢活性[J]. 物理化学学报, 2017, 33(7): 1492) | [13] | Marschall R.Semiconductor composites: strategies for enhancing chargecarrier separation to improve photocatalytic activity[J]. Adv. Funct. Mater. 2014, 24: 2421 | [14] | Miller D R, Akbar S A, Morris P A.Nanoscale metal oxide-basedheterojunctions for gas sensing: a review[J]. Sensor. Actuator. B. 2014, 204: 250 | [15] | Chen Y, Wang L, Wang W, Cao M.Enhanced photoelectrochemical properties of ZnO/ZnSe/CdSe/Cu2-xSe core-shell nanowire arrays fabricated by ion-replacement method[J]. Appl. Catal. B-Environ. 2017, 209: 110 | [16] | Xiao F X.Construction of highly ordered ZnO-TiO2 nanotube arrays (ZnO/TNTs) heterostructure for photocatalytic application[J]. ACS Appl. Mater.Interfaces, 2012, 4: 7055 | [17] | Shaheen B S, Salem H G, El-Sayed M A, et al. Thermal/electrochemical growth and characterization of one-dimensional ZnO/TiO2 hybrid nanoelectrodes for solar fuel production[J]. J. Phys. Chem. C, 2013, 117: 18502 | [18] | Park J Y, Choi S W, Lee J W, et al.Synthesis and gas sensingproperties of TiO2-ZnO core-shell nanofibers[J]. J. Am. Ceram. Soc. 2009, 92: 2551 | [19] | Chang J, Kuga Y, Mora-Sero Y, et al.High reduction of interfacial charge recombination in colloidalquantum dot solar cells by metal oxide surface passivation[J]. Nanoscale, 2015, 7: 5446 | [20] | Shao D, Sun H, Xin G, et al.High quality ZnO-TiO2 core-shell nanowires for efficient ultraviolet sensing[J]. Appl. Surf. Sci. 2014, 314: 872 | [21] | Pan K, Dong Y, Zhou W, et al.Facilefabrication of hierarchical TiO2 nanobelt/ZnO nanorod heterogeneous nanostructure: an efficient photoanode for water splitting[J]. ACS Appl. Mater.Interfaces, 2013, 5: 8314 | [22] | Wang L, Liu S, Wang Z, et al.Piezotronic effect enhanced photocatalysis in strained anisotropic ZnO/TiO2 nanoplatelets viathermal stress[J]. ACS Nano. 2016, 10: 2636 | [23] | Kwiatkowski M, Bezverkhyy I, Skompska M.ZnO nanorods covered with aTiO2 layer: simple sol-gel preparation, and optical, photocatalytic andphotoelectrochemical properties[J]. J. Mater. Chem A. 2015, 3: 12748 | [24] | Watson S, Beydoun D, Amal R S.Synthesis of a novel magnetic photocatalyst by direct deposition of nanosized TiO2 crystals onto a magnetic core[J]. J Photoch Photobio A: Chem, 2002, 148: 303 | [25] | Gao Y, Chen B, Li H, et al.Preparation and characterization of a magnetically separated photocatalyst and its catalytic properties[J]. Mater Chem Phys, 2003, 80: 348 | [26] | Fu W, Yang H, Li M, et al.Anatase TiO2 nanolayer coating on cobalt ferrite nanoparticles for nagnetic photocatalyst[J]. Mater. Lett. 2005, 59: 3530 | [27] | Fu W, Yang H, Chang L, et al.Anatase TiO2 nanolayer coating on strontium ferrite nanoparticles for magnetic photocatalyst[J]. Colloid Surfaces A, 2006, 289: 47 | [28] | Fu W, Yang H, Li M, et al.Preparation and photocatalytic characteristics of core-shell structure TiO2/BaFe12O19 nanoparticles[J]. Mater. Lett., 2006, 60: 2723 | [29] | Chung Y S, Park S B, Kang D W.Magnetically separable titania-coalted nickel ferrite photocatalyst[J]. Mater. Chem. Phy. 2004, 86: 375 | [30] | Ambashta R D, Sillanpaa M.Water purification using magnetic assistance: a review[J]. J. Hazard. Mater., 2010, 180: 38 | [31] | Abramson S, Srithammavanh L, Siaugue J-M, et al.Nanometric core-shell-shell γ-Fe2O3/SiO2/TiO2 particle[J]. J. Nanopart. Res. 2009, 11: 459 | [32] | Song X F, Gao L.Fabrication of bifunctional titania/silica-coated magnetic spheres and their photocatalytic activities[J]. J. Am. Ceram. Soc., 2007, 90: 4015 | [33] | Zhang Q, Meng G, Wu J, et al.Study on enhanced photocatalytic activity of magnetically recoverable Fe3O4@C@TiO2 nanocomposites with core-shell nanostructure[J]. Opt. Mater. 2015, 46: 52 | [34] | Cong R M, Luo Y J, Yu H Q.Effect of polymer templates on the preparation and photocatalytic activity of CdS quantum dots[J]. Acta Chimica Sinica, 2010, 68: 1971(丛日敏, 罗运军, 于怀清. 高分子模板对CdS量子点制备及其光催化性能的影响[J]. 化学学报, 2010, 68(19): 1971) | [35] | Stefan M, Pana O, Leostean C, et al.Synthesis and characterization of Fe3O4-TiO2 core-shell nanoparticles[J]. J. Appl. Phy. 2014, 116: 114312 | [36] | Kwiatkowski M, Chassagnon R, Heintz O, et al.Improvement of photocatalytic and photoelectrochemical activity of ZnO/TiO2 core/shell system through additional calcination: Insight into the mechanism[J]. Appl. Catal. B-Environ., 2017, 204: 200 | [37] | Ramirez-Ortega D, Melendez A M, Acevedo-Pena P, et al.Semiconducting properties of ZnO/TiO2 composites by electrochemical measurements and their relationship with photocatalytic activity[J]. Electrochim. Acta, 2014, 140: 541 | [38] | Zheng X, Li D, Li X, et al.Construction of ZnO/TiO2 photonic crystal heterostructures for enhanced photocatalytic properties[J]. Appl. Catal., B 2015, 168: 408 | [39] | Ramos P G, Flores E, Sanchez L A, et al.Enhanced photoelectrochemical performance and photocatalytic activity of ZnO/TiO2 nanostructures fabricated by an electrostatically modified electrospinning[J]. Appl. Surf. Sci., 2017, 426: 844 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|