Please wait a minute...
材料研究学报  2017, Vol. 31 Issue (9): 641-649    DOI: 10.11901/1005.3093.2016.431
  研究论文 本期目录 | 过刊浏览 |
气泡形核和长大对Gasar多孔Cu的气孔结构和分布的影响
李飞1, 李再久2,3(), 田娟娟3, 谢明3, 朱绍武3, 陈家林3
1 昆明理工大学城市学院 昆明 650051
2 昆明理工大学航空学院 昆明 650500
3昆明贵金属研究所 稀贵金属综合利用新技术国家重点实验室 昆明 650106
Effect of Nucleation and Growth of Pores, and Solidification Mode on Pore Structure and Distribution of Lotus-type Porous Cu
Fei LI1, Zaijiu LI2,3(), Juanjuan TIAN3, Ming XIE3, Shaowu ZHU3, Jialin CHEN3
1 City College, Kunming University of Science and Technology, Kunming 650051, China
2 Aviation College, Kunming University of Science and Technology, Kunming 650500, China
3 State Key Laboratory of Advanced Technologies for Comprehensive Utilization of Platinum Metals, Kunming Institute of Precious Metals, Kunming 650106, China
引用本文:

李飞, 李再久, 田娟娟, 谢明, 朱绍武, 陈家林. 气泡形核和长大对Gasar多孔Cu的气孔结构和分布的影响[J]. 材料研究学报, 2017, 31(9): 641-649.
Fei LI, Zaijiu LI, Juanjuan TIAN, Ming XIE, Shaowu ZHU, Jialin CHEN. Effect of Nucleation and Growth of Pores, and Solidification Mode on Pore Structure and Distribution of Lotus-type Porous Cu[J]. Chinese Journal of Materials Research, 2017, 31(9): 641-649.

全文: PDF(1554 KB)   HTML
摘要: 

研究了气泡形核及长大对Gasar气孔结构和分布的影响。结果表明:气孔在柱状晶过渡区内生长时,其定向生长受限使气孔的长度变短,内壁不光滑,圆整度变小;当基体以柱状晶生长时气孔随基体共生生长形成典型藕状多孔结构,气孔的长度增加,内壁光滑,圆整度增加。随着气体压力的增大形核功降低导致气泡形核率增加,从而使藕状多孔Cu中气泡的分布逐渐从晶界转移到晶内,试样的平均孔径减小而气孔的密度数和均匀性提高。由于固液界面上的沟槽和晶界的特殊性,气泡在晶界处的形核优先于晶内,导致晶界处气孔的平均直径比晶内气孔的直径大。

关键词 金属材料Gasar藕状多孔Cu凝固模式形核长大    
Abstract

The effect of pore nucleation,pore growth and solidification mode of matrix on pore structure and distribution of lotus-type porous Cu were investigated. It is difficult to obtain an ordered pore structure when the matrix is a region of columnar transition. An ordered pore structure could be obtained only when the matrix transforms to columnar grains with increase of pore length and circularity. The pore distribution moved from the grain boundaries to the interior of grain with increasing gas pressure. The average pore diameter decreased and the pore density increased due to decrease of activation energy and increased rate of nucleus formation. Due to slight depressions at grain boundaries regions at the solid/liquid interface, the pore nucleation is favored at grain boundaries and thus the average pore diameter in the grain boundaries is larger than that of in the grains.

Key wordsmetallic materials    Gasar    lotus-type porous Cu    solidification model    pore nucleation    pore growth
收稿日期: 2016-07-22     
ZTFLH:  TG146  
基金资助:贵金属先进材料协同创新中心协同创新基金(2014XT03)和稀贵金属综合利用新技术国家重点实验室开放课题(SKL-SPM-201545)
作者简介:

作者简介 李 飞,男,1981年生,讲师

图1  藕状多孔Cu制备装置示意图
Sample PH2
/MPa
PAr
/MPa
ΔT
/K
ε ε' d'
m
2H0Ar 0.2 0 200 49 51 1771
2H2Ar 0.2 0.2 200 37 23 874
4H2Ar 0.4 0.2 200 34 28 272
表1  藕状多孔Cu试样的工艺参数及其对应的结构参数
图2  藕状多孔Cu横截面及纵剖面图(PH2=0.2 MPa, PAr=0 MPa)
图3  凝固模式对2H0Ar试样气孔结构的影响
图4  气体压力P对气孔密度数n的影响
图5  气体压力P对气孔结构和分布的影响
图6  Gasar工艺中气泡在熔体中的形核
The model of bubble nucleation The radius of critical nucleus The activation energy
and the shape factor
Homogeneous bubble
nucleation
rn=2σL-G3(PH2+PAr) ΔGn=19?ΔGi(rn)
Heterogeneous bubble nucleation Planar interfaces r'n=2σL-G3(PH2+PAr) ΔGn'=19?ΔGi(r'n)?f(θ)
f(θ)=(2+cosθ)(1-cosθ)24
Pits or cracks r''n=2σL-G3(PH2+PAr) ΔGn''=ΔG''?f(θ)=19?ΔGi(r''n)?f(θγ)
f(θ,γ)=1-sin(θ+γ2)4sin(γ2)?2sin(γ2)-cosθ1+sin(θ+γ2)
表2  不同气泡形核方式对应的形核功和临界形核半径
图7  不同气泡形核模式的与形状因子和系统吉布斯自由能曲线
Metal ΔT / K ρLgh / Pa Pvap/Pa θ / o σL-G / (Jm-2)
Cu 200 7840 1.28 134 1.31
表3  计算气泡形核所用的参数
图8  固液界面形貌与气泡的形核
图9  PH2、PAr及ΔT对气泡生长的影响
[1] Shapovalov V I.Method of manufacture of porous articles [P]. U.S. A, 5181549, 1993
[2] Li Y G, Jin Q L, Yang T W, et al.Influence of solidification rate on pore structure of lotus-type porous metals[J]. Chin. J. Mater. Res., 2014, 28(6): 476(李雨耕, 金青林, 杨天武等. 凝固速率对藕状多孔金属结构的影响[J]. 材料研究学报, 2014, 28(6): 476)
[3] Liu Y, Li Y X, Wan J, et al.Evaluation of porosity in lotus-type porous magnesium fabricated by metal/gas eutectic unidirectional solidification[J]. Mater. Sci. Eng., 2005, A402: 47
[4] Li Z J, Jin Q L, Yang T W, et al.Fabrication of lotus-type porous Cu-Zn alloys with the Gasar continuous casting process[J]. Acta Metall. Sin., 2013, 49(6): 757(李再久,金青林,杨天武等. Gasar连铸工艺制备藕状多孔Cu-Zn合金[J]. 金属学报, 2013, 49(6): 757)
[5] Xie J X, Liu X H, Liu X F, et al.Fabrication and characterization of lotus-type porous pure copper bar[J]. Chin. J. Nonferrous Met., 2005, 15(11): 1869(谢建新, 刘新华, 刘雪峰. 藕状多孔纯铜棒的制备与表针[J]. 中国有色金属学报, 2005, 15(11): 1869)
[6] Li Z J, Jin Q L, Yang T W, et al.A thermodynamic model for directional solidification of metal-hydrogen eutectic[J]. Acta Metall. Sin., 2014, 50(4): 507(李再久, 金青林, 杨天武等. 金属-氢共晶定向凝固热力学模型[J]. 金属学报, 2014, 50(4): 507)
[7] Liu X N, Li Y X, Chen X.Foam stability in gas injection foaming processing[J]. J. Mater. Sci., 2010, 45(23): 6481
[8] Hyun S K, Murakami K, Nakajima H.Anisotropic mechanical properties of porous copper fabricated by unidirectional solidification[J]. Mater. Sci. Eng., 2001, A299: 241
[9] Simone A E, Gibson L J.The tensile strength of porous copper made by the Gasar process[J]. Acta Mater., 1996, 44(4): 1437
[10] Nakajima H.Fabrication, properties and application of porous metals with directional pores[J]. Prog. Mater. Sci., 2007, 52: 1091
[11] Hyun S K, Nakajima H.Anisotropic compressive properties of porous copper fabricated by unidirectional solidification[J]. Mater. Sci. Eng., 2003, A304: 258
[12] Chen L T, Zhang H W, Liu Y.Experimental research on heat transfer performance of directionally solidified porous copper heat sink[J]. Acta Metall. Sin., 2012, 48(3): 329(陈刘涛, 张华伟, 刘源等. 定向凝固多孔Cu热沉传热性能的实验研究[J].金属学报, 2012, 48(3): 329)
[13] Ogushi T, Chiba H, Nakajima H, et al.Measurement and analysis of effective thermal conductivities of lotus-type porous copper[J]. J. Appl. Phys., 2004, 95(10): 5843
[14] Xie Z K, Ikeda T, Okuda Y, et al.Sound absorption characteristics of lotus-type porous copper fabricated by unidirectional solidification[J]. Mater. Sci. Eng., 2004, A386: 390
[15] Liu Y, Li Y X, Liu R F, et al.Theoretical analysis on effect of transference velocity on structure of porous metals fabricated by continuous casting GASAR process[J]. Acta Metall. Sin., 2010, 46(2): 129(刘源, 李言祥, 刘润发等. 连铸法GASAR工艺中抽拉速率影响的理论分析[J]. 金属学报, 2010, 46(2): 129)
[16] Liu Y, Li Y X, Zhang H W.Effect of Gasar processing parameters on structure of lotus-type porous magnesium[J], Rare Metal Mater. Eng., 2005, 34(7): 1128(刘源, 李言祥, 张华伟. 金属/气体共晶定向凝固工艺参数对藕状多孔金属镁结构的影响[J]. 稀有金属材料与工程, 2005, 34(7): 1128)
[17] Liu Y, Li Y X.Theoretical analysis of bubble nucleation in Gasar materials[J]. Trans. Nonferrous Met. Soc. China, 2003, 13(4): 830
[18] Zhang H W, Li Y X.Study on bubble nucleation in liquid metal[J]. Acta phy. Sin., 2007, 56(8): 4864(张华伟, 李言祥. 金属熔体中气泡形核的理论分析[J]. 物理学报, 2007, 56(8): 4864)
[19] Zhang H W, Li Y X, Liu Y.Hydrogen solubility in pure metals for Gasar process[J]. Acta Metall. Sin., 2007, 43(2): 113(张华伟, 李言祥, 刘源. 氢在Gasar工艺常用纯金属中的溶解度[J]. 金属学报, 2007, 43(2): 113)
[20] Jiang G R, Li Y X, Liu Y.Influence of solidification mode on pore structure of directionally solidified porous Cu-Mn alloy[J]. Trans. Nonferrous Met. Soc. China, 2011, 21: 88
[21] Kurz W, Fisher D J.Fundamentals of solidification[M]. Brookfield: Trans Tech Publications, 1989
[22] Smithells C J.Smithells Metals Reference Book [M]. Boston: Reed Educational and Professional Publishing Ltd, 1992
[23] Kato E.Pore nucleation solidifying high-purity copper[J]. Metall. Mater. Trans., 1999, 30A(9): 2449
[24] Fredriksson H, Svensson I.On the mechanism of pore nucleation in metals[J]. Metall. Trans., 1976, B7(4): 599
[25] Tiwari S N, Beech J.Origin of gas bubbles in aluminum[J]. Met. Sci., 1978, 12(8): 356
[26] Cui Z Q.Metallurgy and Heat Treatment [M]. Beijing: China Machine Press, 2000(崔忠圻. 金属学与热处理[M]. 北京: 机械工业出版社,2000)
[27] Yamamura S, Shiota H, Murakami K, et al.Evaluation of porosity in porous copper fabricated by unidirectional solidification under pressurized hydrogen[J]. Mater. Sci. Eng., 2001, A318: 137
[1] 毛建军, 富童, 潘虎成, 滕常青, 张伟, 谢东升, 吴璐. AlNbMoZrB系难熔高熵合金的Kr离子辐照损伤行为[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] 赵政翔, 廖露海, 徐芳泓, 张威, 李静媛. 超级奥氏体不锈钢24Cr-22Ni-7Mo-0.4N的热变形行为及其组织演变[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] 幸定琴, 涂坚, 罗森, 周志明. C含量对VCoNi中熵合金微观组织和性能的影响[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] 欧阳康昕, 周达, 杨宇帆, 张磊. LPSOMg-Y-Er-Ni合金的组织和拉伸性能[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] 徐利君, 郑策, 冯小辉, 黄秋燕, 李应举, 杨院生. 定向再结晶对热轧态Cu71Al18Mn11合金的组织和超弹性性能的影响[J]. 材料研究学报, 2023, 37(8): 571-580.
[8] 熊诗琪, 刘恩泽, 谭政, 宁礼奎, 佟健, 郑志, 李海英. 固溶处理对一种低偏析高温合金组织的影响[J]. 材料研究学报, 2023, 37(8): 603-613.
[9] 刘继浩, 迟宏宵, 武会宾, 马党参, 周健, 徐辉霞. 喷射成形M3高速钢热处理过程中组织的演变和硬度偏低问题[J]. 材料研究学报, 2023, 37(8): 625-632.
[10] 由宝栋, 朱明伟, 杨鹏举, 何杰. 合金相分离制备多孔金属材料的研究进展[J]. 材料研究学报, 2023, 37(8): 561-570.
[11] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[12] 王昊, 崔君军, 赵明久. 镍基高温合金GH3536带箔材的再结晶与晶粒长大行为[J]. 材料研究学报, 2023, 37(7): 535-542.
[13] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.
[14] 秦鹤勇, 李振团, 赵光普, 张文云, 张晓敏. 固溶温度对GH4742合金力学性能及γ' 相的影响[J]. 材料研究学报, 2023, 37(7): 502-510.
[15] 刘天福, 张滨, 张均锋, 徐强, 宋竹满, 张广平. 缺口应力集中系数对TC4 ELI合金低周疲劳性能的影响[J]. 材料研究学报, 2023, 37(7): 511-522.