|
|
Au改性BaTiO3纳米颗粒在模拟太阳光照射下的光催化降解性能 |
县涛1( ),邸丽景1,2,马俊1,桑萃萃1,魏学刚1,周永杰1 |
1 青海师范大学物理系 西宁 810008 2 兰州理工大学 省部共建有色金属先进加工与再利用国家重点实验室 兰州 730050 |
|
Photocatalytic Degradation Activity of BaTiO3 Nanoparticles Modified with Au in Simulated Sunlight |
Tao XIAN1( ),Lijing DI1,2,Jun MA1,Cuicui SANG1,Xuegang WEI1,Yongjie ZHOU1 |
1 Department of Physics, Qinghai Normal University, Xining 810008,China 2 State Key Laboratory of Advanced Processing and Recycling of Non-ferrous Metals, Lanzhou University of Technology, Lanzhou 730050, China |
引用本文:
县涛,邸丽景,马俊,桑萃萃,魏学刚,周永杰. Au改性BaTiO3纳米颗粒在模拟太阳光照射下的光催化降解性能[J]. 材料研究学报, 2017, 31(2): 102-109.
Tao XIAN,
Lijing DI,
Jun MA,
Cuicui SANG,
Xuegang WEI,
Yongjie ZHOU.
Photocatalytic Degradation Activity of BaTiO3 Nanoparticles Modified with Au in Simulated Sunlight[J]. Chinese Journal of Materials Research, 2017, 31(2): 102-109.
[1] | Fox M A, Dulay M T.Heterogeneous photocatalysis[J]. Chem. Rev., 1993, 93(1): 341 | [2] | Hoffmann M R, Martin S T, Choi W, et al.Environmental applications of semiconductor photocatalysis[J]. Chem. Rev., 1995, 95(1): 69 | [3] | Wang R Y, Ao W, Chen M, et al.Effect of calcination temperature on photocatalytic property of N-doped titania hollow microspheres[J]. Chin. J. Mater. Res., 2015, 29(6): 434 | [3] | (王如意, 敖卫, 陈苗等. 煅烧温度对N掺杂TiO2中空介孔微球光催化性能的影响[J]. 材料研究学报, 2015, 29(6): 434) | [4] | He M Y, Zhang H, Dai Y T, et al.Preparation and photocatalytic activity of sepiolite/flower-like BiOCl nanocomposites[J]. Chin. J. Mater. Res., 2015, 29(3): 178 | [4] | (何明乙, 张欢, 戴亚堂等. 海泡石-花球状BiOCl纳米复合材料的制备及其光催化性能[J]. 材料研究学报, 2015, 29(3): 178) | [5] | Wang W P, Yang H, Xian T, et al.Polyacrylamide gel synthesis of BaTiO3 nanoparticles and its photocatalytic properties for methyl red degradation[J]. Chinese. J. Catal., 2012, 33(2): 354 | [5] | (王伟鹏, 杨华, 县涛等. BaTiO3纳米颗粒的聚丙烯酰胺凝胶法合成及光催化降解甲基红性能[J]. 催化学报, 2012, 33(2): 354) | [6] | Wang P G, Fan C M, Wang Y W, et al.A dual chelating sol-gel synthesis of BaTiO3 nanoparticles with effective photocatalytic activity for removing humic acid from water[J]. Mater. Res. Bull., 2013, 48(2): 869 | [7] | Cui Y F, Briscoe J, Dunn S.Effect of ferroelectricity on solar-light-driven photocatalytic activity of BaTiO3-in?uence on the carrier separation and stern layer formation[J]. Chem. Mater., 2013, 25(21): 4215 | [8] | Devi L G, Krishnamurthy G.TiO2- and BaTiO3-assisted photocatalytic degradation of selected chloroorganic compounds in aqueous medium: correlation of reactivity/orientation effects of substituent groups of the pollutant molecule on the degradation rate[J]. J. Phys. Chem. A, 2011, 115(4): 460 | [9] | Cui Z K, Mi L W, Fa W J, et al.Preparation and photocatalytic performance of Pt/BiOCl nanostructures[J]. Chin. J. Mater. Res., 2013, 27(6): 583 | [9] | (崔占奎, 米立伟, 法文君等. Pt/BiOCl纳米结构的制备及其光催化性能[J]. 材料研究学报, 2013, 27(6): 583) | [10] | Xian T, Yang H, Di L J, et al.Enhanced photocatalytic activity of SrTiO3 particles by surface decoration with Ag nanoparticles for dye degradation[J]. Phys. Scr., 2015, 90(5): 055801 | [11] | Linic S, Christopher P, Ingram D B.Plasmonic-metal nanostructures for efficient conversion of solar to chemical energy[J]. Nature Mater., 2011, 10(12): 911 | [12] | Wang C L, Astruc D.Nanogold plasmonic photocatalysis for organic synthesis and clean energy conversion[J]. Chem. Soc. Rev., 2014, 43(20):7188 | [13] | Liu J W, Sun Y, Li Z H.Ag loaded ?ower-like BaTiO3 nanotube arrays: Fabrication and enhanced photocatalytic property[J]. Crystengcomm, 2012, 14(4): 1473 | [14] | Su R, Shen Y J, Li L L, et al.Silver-modi?ed nanosized ferroelectrics as a novel photocatalyst[J]. Small, 2014, 11(2): 202 | [15] | Zhang S W, Zhang B P, Li S, et al.SPR enhanced photocatalytic properties of Au-dispersed amorphous BaTiO3 nanocomposite thin films[J]. J. Alloys Compd., 2016, 654: 112 | [16] | Karunakaran C, Anilkumar P, Gomathisankar P.Photoproduction of iodine with nanoparticulate semiconductors and insulators[J]. Chem Cent J., 2010, 5(1): 1 | [17] | Xing M Y, Yang B X, Yu H, et al.Enhanced photocatalysis by Au nanoparticle loading on TiO2 single-crystal(001) and(110) facets[J]. J. Phys. Chem. Lett., 2013, 4(22): 3910 | [18] | Auer S, Frenkel D.Suppression of crystal nucleation in polydisperse colloids due to increase of the surface free energy[J]. Nature, 2001, 413(6857): 711 | [19] | Lin X P, Xing J C, Wang W D, et al.Photocatalytic activities of heterojunction semiconductors Bi2O3/BaTiO3: A strategy for the design of efficient combined photocatalysts[J]. J. Phys. Chem. C, 2007, 111(5352): 836 | [20] | Yang J, Wang X H, Chen Y M, et al.Enhanced photocatalytic activities of visible-light driven green synthesis in water and environmental remediation on Au/Bi2WO6 hybrid nanostructures[J]. RSC Adv., 2015, 5(13): 9771 | [21] | Yamada Y, Kanemitsu Y.Photoluminescence spectra of perovskite oxide semiconductors[J]. J. Lumin., 2013, 133(1): 30 | [22] | Patra B K, Guria A K, Dutta A, et al.Au-SnS hetero nanostructures: size of Au matters[J]. Chem. Mater., 2014, 26(24): 7194 | [23] | Xu D B, Yang S B, Jin Y, et al.Ag-decorated ATaO3(A = K, Na) nanocube plasmonic photocatalysts with enhanced photocatalytic water-splitting properties[J]. Langmuir, 2015, 31(35): 9694 | [24] | Hou W B, Hung W H, Pavaskar P, et al.Photocatalytic conversion of CO2 to hydrocarbon fuels via plasmon-enhanced absorption and metallic interband transitions[J]. ACS Catal., 2011, 1(8): 929 | [25] | Xian T, Yang H, Di L J, et al.Enhanced photocatalytic activity of BaTiO3@g-C3N4 for the degradation of methyl orange under simulated sunlight irradiation[J]. J. Alloys Compd., 2015, 622: 1098 | [26] | Jiang H Y, Cheng K, Lin J.Crystalline metallic Au nanoparticle-loaded a-Bi2O3 microrods for improved photocatalysis[J]. Phys. Chem. Chem. Phys., 2012, 14(35): 12114 | [27] | Yan J Q, Wu G J, Guan N J, et al.Synergetic promotion of the photocatalytic activity of TiO2 by gold deposition under UV-visible light irradiation[J]. Chem. Commun., 2013, 49(100): 11767 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|