Please wait a minute...
材料研究学报  2022, Vol. 36 Issue (6): 461-470    DOI: 10.11901/1005.3093.2021.150
  研究论文 本期目录 | 过刊浏览 |
FeCr-ODS铁素体合金的氧化+粉锻工艺制备及其微观结构
闫福照1,2, 李静1, 熊良银1, 刘实1()
1.中国科学院金属研究所师昌绪先进材料中心 沈阳 110016
2.中国科学技术大学材料科学与工程学院 沈阳 110016
Preparation and Microstructure of FeCr-ODS Ferrite Alloy Fabricated by Oxidation and Powder Forging
YAN Fuzhao1,2, LI Jing1, XIONG Liangyin1, LIU Shi1()
1.Shi -changxu Innovation Center for Advanced Materials, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
2.School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China
引用本文:

闫福照, 李静, 熊良银, 刘实. FeCr-ODS铁素体合金的氧化+粉锻工艺制备及其微观结构[J]. 材料研究学报, 2022, 36(6): 461-470.
Fuzhao YAN, Jing LI, Liangyin XIONG, Shi LIU. Preparation and Microstructure of FeCr-ODS Ferrite Alloy Fabricated by Oxidation and Powder Forging[J]. Chinese Journal of Materials Research, 2022, 36(6): 461-470.

全文: PDF(15749 KB)   HTML
摘要: 

提出一种氧化+粉锻(粉末锻造)新工艺并用其制备了FeCr-ODS铁素体合金。使用SEM、XPS、EPMA和TEM等手段对其表征,研究了粉末表面和内部氧化物的生成、演变以及合金中纳米氧化物弥散相的种类和分布特征。结果表明,在低温氧化过程中粉末表面生成了一层Fe的氧化膜,在随后的加热过程中粉末表面的O元素转移并与Y和Ti元素反应生成了Y-Ti-O纳米氧化物弥散相。通过纳米氧化物弥散相在粉末成型过程中的演变,阐明了粉锻对位错和纳米氧化物析出相形成的贡献。用这种工艺制备的ODS铁素体合金,大量细小的Y2TiO5析出相均匀地分布在基体中,晶界上只有少量大颗粒Y2O3

关键词 材料合成与加工工艺FeCr-ODS铁素体合金粉锻Y-Ti-O纳米颗粒形成机理微观组织    
Abstract

FeCr-ODS ferrite alloy was fabricated via a novel fabrication process of pre-oxidation treatment followed by powder forging proposed by the authors. The prepared alloy was characterized by means of SEM, XPS, EPMA and TEM techniques in terms of the generation, evolution of oxides on the surface and interior of the powder, as well as the type and distribution of oxide nanoparticles in the fabricated ODS ferrite alloy. The results show that an iron oxide film formed on the surface of powders during low temperature oxidation. By the subsequent heating process, the iron oxide could react with Y and Ti to form complex oxide Y-Ti-O nanoparticles. The evolution of oxide dispersoids during the course of fabrication was characterized to clarify the contribution of powder forging to dislocations and nanoscale precipitates. Fine Y2TiO5 nanoparticles uniformly distributed in the matrix, and a small number of Y2O3 particles aligned along the grain boundaries by this manufacturing method.

Key wordssynthesizing and processing technics for materials    FeCr-ODS ferrite alloy    powder forging    Y-Ti-O nanoparticles    formation mechanism    microstructure
收稿日期: 2021-02-25     
ZTFLH:  TB331  
基金资助:国防科技工业核材料技术创新中心项目(ICNM-2020-ZH-17);National Defense Science and Technology Industry Nuclear Material Technology Innovation Center Project(ICNM-2020-ZH-17)
作者简介: 闫福照,男,1992年生,博士生
PowderCrWYTiFe
Fe-Cr9.201.510.440.55Bal.
表1  雾化粉末的成分
图1  氧化粉末表面的SEM照片
PointFeCrWYTiO
187.98.431.5200.571.58
286.698.571.550.660.52.03
384.18.291.491.100.584.44
488.618.981.590.010.510.3
表2  氧化粉末表面不同位置处的能谱
图2  氧化粉末截面上各元素的分布
图3  氧化粉末表面各元素随深度的分布
图4  氧化粉末表面各元素在不同溅射深度的高分辨XPS谱
图5  加热到1150℃粉末表面的SEM照片
PointFeCrWYTiO
185.58.001.522.050.522.41
283.259.701.530.043.202.28
382.547.931.483.320.953.78
481.029.831.540.194.452.97
表3  氧化粉末加热到1150℃后表面不同位置的能谱
图6  氧化粉末加热到1150℃后截面上各元素的分布
图7  氧化粉末加热到1150 ℃后表面各元素含量的XPS深度分析
图8  氧化粉末加热到1150℃后表面各元素在不同溅射深度的高分辨XPS谱
图9  粉锻成型后合金的金相照片
图10  合金内部的TEM照片
图11  合金中析出相与位错之间的关系
图12  合金中析出相的面扫描
图13  合金中析出相的结构
d1(011)/nmd2(121)/nmd3(110)/nmα12/(°)α23/(°)
Measured0.35000.29860.777222.33756.45
Y2TiO50.35140.29620.761723.3957.52
表4  小颗粒的面间距(d)和角度(α)以及对应析出相的结构
1 Allen T, Busby J, Meyer M, et al. Materials challenges for nuclear systems [J]. Mater. Today, 2010, 13: 14
2 Karak S K, Chudoba T, Witczak Z, et al. Development of ultra high strength nano-Y2O3 dispersed ferritic steel by mechanical alloying and hot isostatic pressing [J]. Mater. Sci. Eng., 2011, 528A: 7475
3 Chu S, Majumdar A. Opportunities and challenges for a sustainable energy future [J]. Nature, 2012, 488: 294
doi: 10.1038/nature11475
4 Grimes R W, Nuttall W J. Generating the option of a two-stage nuclear renaissance [J]. Science, 2010, 329: 799
doi: 10.1126/science.1188928 pmid: 20705854
5 Zhao Q, Yu L M, Liu Y C, et al. Evolution of Al-containing phases in ODS steel by hot pressing and annealing [J]. Powder Technol., 2017, 311: 449
doi: 10.1016/j.powtec.2017.02.016
6 Zhang Z B, Pantleon W. Response of oxide nanoparticles in an oxide dispersion strengthened steel to dynamic plastic deformation [J]. Acta Mater., 2018, 149: 235
doi: 10.1016/j.actamat.2018.02.042
7 Hoelzer D T, Unocic K A, Sokolov M A, et al. Influence of processing on the microstructure and mechanical properties of 14YWT [J]. J. Nucl. Mater., 2016, 471: 251
doi: 10.1016/j.jnucmat.2015.12.011
8 Brocq M, Radiguet B, Poissonnet S, et al. Nanoscale characterization and formation mechanism of nanoclusters in an ODS steel elaborated by reactive-inspired ball-milling and annealing [J]. J. Nucl. Mater., 2011, 409: 80
doi: 10.1016/j.jnucmat.2010.09.011
9 Chen C L, Dong Y M. Effect of mechanical alloying and consolidation process on microstructure and hardness of nanostructured Fe-Cr-Al ODS alloys [J]. Mater. Sci. Eng., 2011, 528A: 8374
10 Hong Z Y, Zhang X X, Yan Q Z, et al. A new method for preparing 9Cr-ODS steel using elemental yttrium and Fe2O3 oxygen carrier [J]. J. Alloys Compd., 2019, 770: 831
doi: 10.1016/j.jallcom.2018.08.196
11 Mansur L K, Rowcliffe A F, Nanstad R K, et al. Materials needs for fusion, Generation IV fission reactors and spallation neutron sources-similarities and differences [J]. J. Nucl. Mater., 2004, 329-333: 166
doi: 10.1016/j.jnucmat.2004.04.016
12 Tan L, Katoh Y, Tavassoli A A F, et al. Recent status and improvement of reduced-activation ferritic-martensitic steels for high-temperature service [J]. J. Nucl. Mater., 2016, 479: 515
doi: 10.1016/j.jnucmat.2016.07.054
13 Bergner F, Hilger I, Virta J, et al. Alternative fabrication routes toward oxide-dispersion-strengthened steels and model alloys [J]. Metall. Trans., 2016, 47A: 5313
14 Schneibel J H, Shim S. Nano-scale oxide dispersoids by internal oxidation of Fe-Ti-Y intermetallics [J]. Mater. Sci. Eng., 2008, 488A: 134
15 Rieken J R, Anderson I E, Kramer M J, et al. Reactive gas atomization processing for Fe-based ODS alloys [J]. J. Nucl. Mater., 2012, 428: 65
doi: 10.1016/j.jnucmat.2011.08.015
16 Gil E, Cortés J, Iturriza I, et al. XPS and SEM analysis of the surface of gas atomized powder precursor of ODS ferritic steels obtained through the STARS route [J]. Appl. Surf. Sci., 2018, 427: 182
doi: 10.1016/j.apsusc.2017.07.205
17 Gil E, Ordás N, García-Rosales C, et al. ODS ferritic steels produced by an alternative route (STARS): microstructural characterisation after atomisation, HIPping and heat treatments [J]. Powder Metall., 2016, 59: 359
doi: 10.1080/00325899.2016.1254894
18 Su Y C. Study on podwer forging technology and its application [J]. Eng. Techol., 2010, 2: 35
18 苏寅初. 粉末锻造技术及其应用问题研究 [J]. 工程技术, 2018, 2: 35
19 Tang H S. Deveolpment and application of podwer forging abroad [J]. Forging Stam. Technol., 1985, (6): 57
19 唐华生. 国外粉末锻造的发展和应用 [J]. 锻压技术, 1985(6): 57
20 Jia M T, Zhang D L, Liang J M, et al. Porosity, microstructure, and mechanical properties of Ti-6Al-4V alloy parts fabricated by powder compact forging [J]. Metall. Mater. Trans., 2017, 48A: 2015
21 Wang Y K, Peng M G. The generalization of powder forging processand technology [J]. Met. Mater. Metall. Eng., 2007, 35(5): 57
21 王云坤, 彭茂公. 粉末锻造工艺技术的发展概况 [J]. 金属材料与冶金工程, 2007, 35(5): 57
22 Li Z X. Study on podwer forging technology of 12Cr2Ni4A and 18Cr2Ni4WA alloy [J]. Aviat. Maint. Eng., 1997, (2): 10
22 李宗霞. 合金钢12Cr2Ni4A和18Cr2Ni4WA粉末锻造工艺研究 [J]. 航空制造工程, 1997, (2): 10
23 Xia Y H, Xu Y X. Process adaptability and partsapplication of powder forging [J]. Forg. Metalform., 2016, (17): 40
23 夏玉海, 徐玉秀. 粉末锻造的工艺适应性与零件应用 [J]. 锻造与冲压, 2016, (17): 40
24 Liu Z Y, Wang X F. Study on properties of powder forging Ti-6Al-4V-1Nb alloy for machinery [J]. Hot Working Technol., 2019, 48(11): 124
24 刘志英, 王晓峰. 机械用粉末锻造Ti-6Al-4V-1Nb合金的性能研究 [J]. 热加工工艺, 2019, 48(11): 124
25 Mao Z G, Booth-Morrison C, Sudbrack C K, et al. Interfacial free energies, nucleation, and precipitate morphologies in Ni-Al-Cr alloys: calculations and atom-probe tomographic experiments [J]. Acta Mater., 2019, 166: 702
doi: 10.1016/j.actamat.2019.01.017
26 Nomura K, Ujihira Y. Analysis of oxide layers on stainless steel (304, and 316) by conversion electron Mössbauer spectrometry [J]. J. Mater. Sci., 1990, 25: 1745
doi: 10.1007/BF01045379
27 Miller R J, Gangulee A. Low‐temperature interdiffusion in titanium-permalloy thin‐film diffusion couples [J]. J. Vac. Sci. Technol., 1978, 15: 244
doi: 10.1116/1.569491
28 Liu Y, Fang J H, Liu D H, et al. Formation of oxides particles in ferritic steel by using gas-atomized powder [J]. J. Nucl. Mater., 2010, 396: 86
doi: 10.1016/j.jnucmat.2009.10.057
29 Liu T, Shen H, Wang C, et al. Microstructure and mechanical properties of Al containing ODS ferritic alloys by VHP and HIP [J]. Mater. Res. Innov., 2014, 18(): S4-410
30 Pazos D, Cintins A, De Castro V, et al. ODS ferritic steels obtained from gas atomized powders through the STARS processing route: Reactive synthesis as an alternative to mechanical alloying [J]. Nucl. Mater. Energy, 2018, 17: 1
31 Chen D Y, Murakami K, Chen L, et al. An investigation of nucleation sites for the formation of solute clusters in ferrite Fe [J]. Nucl. Instrum. Methods Phys. Res. Sect., 2020, 478B: 182
32 Fu C L, Krčmar M, Painter G S, et al. Vacancy mechanism of high oxygen solubility and nucleation of stable oxygen-enriched clusters in Fe [J]. Phys. Rev. Lett., 2007, 99: 225502
doi: 10.1103/PhysRevLett.99.225502
33 Hirata A, Fujita T, Wen Y R, et al. Atomic structure of nanoclusters in oxide-dispersion-strengthened steels [J]. Nat. Mater., 2011, 10: 922
doi: 10.1038/nmat3150 pmid: 22019943
34 Wu Y, Ciston J, Kräemer S, et al. The crystal structure, orientation relationships and interfaces of the nanoscale oxides in nanostructured ferritic alloys [J]. Acta Mater., 2016, 111: 108
doi: 10.1016/j.actamat.2016.03.031
35 Sakasegawa H, Chaffron L, Legendre F, et al. Correlation between chemical composition and size of very small oxide particles in the MA957 ODS ferritic alloy [J]. J. Nucl. Mater., 2009, 384: 115
doi: 10.1016/j.jnucmat.2008.11.001
36 Klimiankou M, Lindau R, Möslang A. TEM characterization of structure and composition of nanosized ODS particles in reduced activation ferritic-martensitic steels [J]. J. Nucl. Mater., 2004, 329-333: 347
doi: 10.1016/j.jnucmat.2004.04.083
37 Dou P, Qiu L L, Jiang S M, et al. Crystal and metal/oxide interface structures of nanoparticles in Fe-16Cr-0.1Ti-0.35Y2O3 ODS steel [J]. J. Nucl. Mater., 2019, 523: 320
doi: 10.1016/j.jnucmat.2019.05.015
38 Francis J M, Jutson J A. High temperature oxidation of an Fe-Cr-Al-Y alloy in CO2 [J]. Corros. Sci., 1968, 8: 445.
doi: 10.1016/S0010-938X(68)90120-0
39 Shen J J, Li Y F, Li F, et al. Microstructural characterization and strengthening mechanisms of a 12Cr-ODS steel [J]. Mater. Sci. Eng., 2016, 673A: 624
[1] 幸定琴, 涂坚, 罗森, 周志明. C含量对VCoNi中熵合金微观组织和性能的影响[J]. 材料研究学报, 2023, 37(9): 685-696.
[2] 熊诗琪, 刘恩泽, 谭政, 宁礼奎, 佟健, 郑志, 李海英. 固溶处理对一种低偏析高温合金组织的影响[J]. 材料研究学报, 2023, 37(8): 603-613.
[3] 雷志国, 文胜平, 黄晖, 张二庆, 熊湘沅, 聂祚仁. 冷轧变形和添加SiAl-2Mg-0.8Cu(-Si)合金的组织和力学性能的影响[J]. 材料研究学报, 2023, 37(6): 463-471.
[4] 夏博, 王斌, 张鹏, 李小武, 张哲峰. 回火温度对高强弹簧钢微观组织和冲击性能的影响[J]. 材料研究学报, 2023, 37(5): 341-352.
[5] 董宇昂, 阳华杰, 贲丹丹, 马云瑞, 周相海, 王斌, 张鹏, 张哲峰. 液氮电脉冲处理超细晶316L不锈钢的低温拉伸性能[J]. 材料研究学报, 2023, 37(3): 168-174.
[6] 刘东洋, 童广泽, 高文理, 王卫凯. 2060铝锂合金厚板的各向异性[J]. 材料研究学报, 2023, 37(3): 235-240.
[7] 周聪, 昝宇宁, 王东, 王全兆, 肖伯律, 马宗义. (Al11La3+Al2O3)/Al复合材料的高温性能及其强化机制[J]. 材料研究学报, 2023, 37(2): 81-88.
[8] 聂敬敬, 龚政轩, 孙京丽, 杨斯达, 夏先朝, 徐爱杰. 2195-2219异种铝合金焊接接头的微观组织和性能[J]. 材料研究学报, 2023, 37(2): 152-160.
[9] 肖寒, 周瑀杭, 陈磊, 张雄超, 崔鋆昕, 熊迟. 等温处理时间对触变挤压锡青铜轴套的组织和性能的影响[J]. 材料研究学报, 2022, 36(9): 641-648.
[10] 王国田, 龙泽堃, 吴彪, 王强, 丁宏升. 脉冲电流对冷坩埚定向凝固TiAl基合金微观组织和性能的影响[J]. 材料研究学报, 2022, 36(9): 706-714.
[11] 周海涛, 侯湘武, 汪彦博, 肖旅, 袁勇, 孙京丽. Nb-TiAl合金的高温变形行为及其板材的性能[J]. 材料研究学报, 2022, 36(6): 471-480.
[12] 范晋平, 蒋一锋, 裴镖, 康文旭. YMg-14Al-5Si合金性能的影响[J]. 材料研究学报, 2022, 36(3): 213-219.
[13] 谢锐, 吕铮, 徐长伟, 王晴, 刘春明. 含钛氧化物弥散强化钢的微观组织和力学性能[J]. 材料研究学报, 2022, 36(2): 99-106.
[14] 王沛锦, 艾桃桃, 廖仲尼, 赵堃, 李文虎, 寇领江, 赵中国, 邹祥宇. 热压烧结(FeNiCoCr)100-x Al x (x=05)高熵合金的微观组织及力学性能[J]. 材料研究学报, 2022, 36(11): 871-880.
[15] 刘玮, 王辉, 褚兴荣, 王延刚, 高军. TC4金字塔点阵结构的激光焊接及其平压性能[J]. 材料研究学报, 2021, 35(8): 623-631.