|
|
FeCr-ODS铁素体合金的氧化+粉锻工艺制备及其微观结构 |
闫福照1,2, 李静1, 熊良银1, 刘实1( ) |
1.中国科学院金属研究所师昌绪先进材料中心 沈阳 110016 2.中国科学技术大学材料科学与工程学院 沈阳 110016 |
|
Preparation and Microstructure of FeCr-ODS Ferrite Alloy Fabricated by Oxidation and Powder Forging |
YAN Fuzhao1,2, LI Jing1, XIONG Liangyin1, LIU Shi1( ) |
1.Shi -changxu Innovation Center for Advanced Materials, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China 2.School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China |
引用本文:
闫福照, 李静, 熊良银, 刘实. FeCr-ODS铁素体合金的氧化+粉锻工艺制备及其微观结构[J]. 材料研究学报, 2022, 36(6): 461-470.
Fuzhao YAN,
Jing LI,
Liangyin XIONG,
Shi LIU.
Preparation and Microstructure of FeCr-ODS Ferrite Alloy Fabricated by Oxidation and Powder Forging[J]. Chinese Journal of Materials Research, 2022, 36(6): 461-470.
1 |
Allen T, Busby J, Meyer M, et al. Materials challenges for nuclear systems [J]. Mater. Today, 2010, 13: 14
|
2 |
Karak S K, Chudoba T, Witczak Z, et al. Development of ultra high strength nano-Y2O3 dispersed ferritic steel by mechanical alloying and hot isostatic pressing [J]. Mater. Sci. Eng., 2011, 528A: 7475
|
3 |
Chu S, Majumdar A. Opportunities and challenges for a sustainable energy future [J]. Nature, 2012, 488: 294
doi: 10.1038/nature11475
|
4 |
Grimes R W, Nuttall W J. Generating the option of a two-stage nuclear renaissance [J]. Science, 2010, 329: 799
doi: 10.1126/science.1188928
pmid: 20705854
|
5 |
Zhao Q, Yu L M, Liu Y C, et al. Evolution of Al-containing phases in ODS steel by hot pressing and annealing [J]. Powder Technol., 2017, 311: 449
doi: 10.1016/j.powtec.2017.02.016
|
6 |
Zhang Z B, Pantleon W. Response of oxide nanoparticles in an oxide dispersion strengthened steel to dynamic plastic deformation [J]. Acta Mater., 2018, 149: 235
doi: 10.1016/j.actamat.2018.02.042
|
7 |
Hoelzer D T, Unocic K A, Sokolov M A, et al. Influence of processing on the microstructure and mechanical properties of 14YWT [J]. J. Nucl. Mater., 2016, 471: 251
doi: 10.1016/j.jnucmat.2015.12.011
|
8 |
Brocq M, Radiguet B, Poissonnet S, et al. Nanoscale characterization and formation mechanism of nanoclusters in an ODS steel elaborated by reactive-inspired ball-milling and annealing [J]. J. Nucl. Mater., 2011, 409: 80
doi: 10.1016/j.jnucmat.2010.09.011
|
9 |
Chen C L, Dong Y M. Effect of mechanical alloying and consolidation process on microstructure and hardness of nanostructured Fe-Cr-Al ODS alloys [J]. Mater. Sci. Eng., 2011, 528A: 8374
|
10 |
Hong Z Y, Zhang X X, Yan Q Z, et al. A new method for preparing 9Cr-ODS steel using elemental yttrium and Fe2O3 oxygen carrier [J]. J. Alloys Compd., 2019, 770: 831
doi: 10.1016/j.jallcom.2018.08.196
|
11 |
Mansur L K, Rowcliffe A F, Nanstad R K, et al. Materials needs for fusion, Generation IV fission reactors and spallation neutron sources-similarities and differences [J]. J. Nucl. Mater., 2004, 329-333: 166
doi: 10.1016/j.jnucmat.2004.04.016
|
12 |
Tan L, Katoh Y, Tavassoli A A F, et al. Recent status and improvement of reduced-activation ferritic-martensitic steels for high-temperature service [J]. J. Nucl. Mater., 2016, 479: 515
doi: 10.1016/j.jnucmat.2016.07.054
|
13 |
Bergner F, Hilger I, Virta J, et al. Alternative fabrication routes toward oxide-dispersion-strengthened steels and model alloys [J]. Metall. Trans., 2016, 47A: 5313
|
14 |
Schneibel J H, Shim S. Nano-scale oxide dispersoids by internal oxidation of Fe-Ti-Y intermetallics [J]. Mater. Sci. Eng., 2008, 488A: 134
|
15 |
Rieken J R, Anderson I E, Kramer M J, et al. Reactive gas atomization processing for Fe-based ODS alloys [J]. J. Nucl. Mater., 2012, 428: 65
doi: 10.1016/j.jnucmat.2011.08.015
|
16 |
Gil E, Cortés J, Iturriza I, et al. XPS and SEM analysis of the surface of gas atomized powder precursor of ODS ferritic steels obtained through the STARS route [J]. Appl. Surf. Sci., 2018, 427: 182
doi: 10.1016/j.apsusc.2017.07.205
|
17 |
Gil E, Ordás N, García-Rosales C, et al. ODS ferritic steels produced by an alternative route (STARS): microstructural characterisation after atomisation, HIPping and heat treatments [J]. Powder Metall., 2016, 59: 359
doi: 10.1080/00325899.2016.1254894
|
18 |
Su Y C. Study on podwer forging technology and its application [J]. Eng. Techol., 2010, 2: 35
|
18 |
苏寅初. 粉末锻造技术及其应用问题研究 [J]. 工程技术, 2018, 2: 35
|
19 |
Tang H S. Deveolpment and application of podwer forging abroad [J]. Forging Stam. Technol., 1985, (6): 57
|
19 |
唐华生. 国外粉末锻造的发展和应用 [J]. 锻压技术, 1985(6): 57
|
20 |
Jia M T, Zhang D L, Liang J M, et al. Porosity, microstructure, and mechanical properties of Ti-6Al-4V alloy parts fabricated by powder compact forging [J]. Metall. Mater. Trans., 2017, 48A: 2015
|
21 |
Wang Y K, Peng M G. The generalization of powder forging processand technology [J]. Met. Mater. Metall. Eng., 2007, 35(5): 57
|
21 |
王云坤, 彭茂公. 粉末锻造工艺技术的发展概况 [J]. 金属材料与冶金工程, 2007, 35(5): 57
|
22 |
Li Z X. Study on podwer forging technology of 12Cr2Ni4A and 18Cr2Ni4WA alloy [J]. Aviat. Maint. Eng., 1997, (2): 10
|
22 |
李宗霞. 合金钢12Cr2Ni4A和18Cr2Ni4WA粉末锻造工艺研究 [J]. 航空制造工程, 1997, (2): 10
|
23 |
Xia Y H, Xu Y X. Process adaptability and partsapplication of powder forging [J]. Forg. Metalform., 2016, (17): 40
|
23 |
夏玉海, 徐玉秀. 粉末锻造的工艺适应性与零件应用 [J]. 锻造与冲压, 2016, (17): 40
|
24 |
Liu Z Y, Wang X F. Study on properties of powder forging Ti-6Al-4V-1Nb alloy for machinery [J]. Hot Working Technol., 2019, 48(11): 124
|
24 |
刘志英, 王晓峰. 机械用粉末锻造Ti-6Al-4V-1Nb合金的性能研究 [J]. 热加工工艺, 2019, 48(11): 124
|
25 |
Mao Z G, Booth-Morrison C, Sudbrack C K, et al. Interfacial free energies, nucleation, and precipitate morphologies in Ni-Al-Cr alloys: calculations and atom-probe tomographic experiments [J]. Acta Mater., 2019, 166: 702
doi: 10.1016/j.actamat.2019.01.017
|
26 |
Nomura K, Ujihira Y. Analysis of oxide layers on stainless steel (304, and 316) by conversion electron Mössbauer spectrometry [J]. J. Mater. Sci., 1990, 25: 1745
doi: 10.1007/BF01045379
|
27 |
Miller R J, Gangulee A. Low‐temperature interdiffusion in titanium-permalloy thin‐film diffusion couples [J]. J. Vac. Sci. Technol., 1978, 15: 244
doi: 10.1116/1.569491
|
28 |
Liu Y, Fang J H, Liu D H, et al. Formation of oxides particles in ferritic steel by using gas-atomized powder [J]. J. Nucl. Mater., 2010, 396: 86
doi: 10.1016/j.jnucmat.2009.10.057
|
29 |
Liu T, Shen H, Wang C, et al. Microstructure and mechanical properties of Al containing ODS ferritic alloys by VHP and HIP [J]. Mater. Res. Innov., 2014, 18(): S4-410
|
30 |
Pazos D, Cintins A, De Castro V, et al. ODS ferritic steels obtained from gas atomized powders through the STARS processing route: Reactive synthesis as an alternative to mechanical alloying [J]. Nucl. Mater. Energy, 2018, 17: 1
|
31 |
Chen D Y, Murakami K, Chen L, et al. An investigation of nucleation sites for the formation of solute clusters in ferrite Fe [J]. Nucl. Instrum. Methods Phys. Res. Sect., 2020, 478B: 182
|
32 |
Fu C L, Krčmar M, Painter G S, et al. Vacancy mechanism of high oxygen solubility and nucleation of stable oxygen-enriched clusters in Fe [J]. Phys. Rev. Lett., 2007, 99: 225502
doi: 10.1103/PhysRevLett.99.225502
|
33 |
Hirata A, Fujita T, Wen Y R, et al. Atomic structure of nanoclusters in oxide-dispersion-strengthened steels [J]. Nat. Mater., 2011, 10: 922
doi: 10.1038/nmat3150
pmid: 22019943
|
34 |
Wu Y, Ciston J, Kräemer S, et al. The crystal structure, orientation relationships and interfaces of the nanoscale oxides in nanostructured ferritic alloys [J]. Acta Mater., 2016, 111: 108
doi: 10.1016/j.actamat.2016.03.031
|
35 |
Sakasegawa H, Chaffron L, Legendre F, et al. Correlation between chemical composition and size of very small oxide particles in the MA957 ODS ferritic alloy [J]. J. Nucl. Mater., 2009, 384: 115
doi: 10.1016/j.jnucmat.2008.11.001
|
36 |
Klimiankou M, Lindau R, Möslang A. TEM characterization of structure and composition of nanosized ODS particles in reduced activation ferritic-martensitic steels [J]. J. Nucl. Mater., 2004, 329-333: 347
doi: 10.1016/j.jnucmat.2004.04.083
|
37 |
Dou P, Qiu L L, Jiang S M, et al. Crystal and metal/oxide interface structures of nanoparticles in Fe-16Cr-0.1Ti-0.35Y2O3 ODS steel [J]. J. Nucl. Mater., 2019, 523: 320
doi: 10.1016/j.jnucmat.2019.05.015
|
38 |
Francis J M, Jutson J A. High temperature oxidation of an Fe-Cr-Al-Y alloy in CO2 [J]. Corros. Sci., 1968, 8: 445.
doi: 10.1016/S0010-938X(68)90120-0
|
39 |
Shen J J, Li Y F, Li F, et al. Microstructural characterization and strengthening mechanisms of a 12Cr-ODS steel [J]. Mater. Sci. Eng., 2016, 673A: 624
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|