Please wait a minute...
材料研究学报  2017, Vol. 31 Issue (11): 801-808    DOI: 10.11901/1005.3093.2016.733
  研究论文 本期目录 | 过刊浏览 |
基于修正C-J法和RVE模型的780 MPa级冷轧双相钢的应变硬化行为
王彦华, 黄兴民, 张雷, 郭远博, 楚珑晟, 戴光泽
1 西南交通大学材料科学与工程学院成都 610031。
2 西南交通大学材料先进技术教育部重点实验室成都 610031。
Characterization and Simulation of Strain-hardening Behavior of a Cold-rolled Dual Phase Steel of 780 MPa Grade by Means of Modified C-J Method and RVE Model
Yanhua WANG, Xingmin HUANG, Lei ZHANG, Yuanbo GUO, Longsheng CHU, Guangze DAI
1 School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China.
2 Key Laboratory of Advanced Technologies of Materials, Ministry of Education, Southwest Jiaotong University, Chengdu 610031, China.
引用本文:

王彦华, 黄兴民, 张雷, 郭远博, 楚珑晟, 戴光泽. 基于修正C-J法和RVE模型的780 MPa级冷轧双相钢的应变硬化行为[J]. 材料研究学报, 2017, 31(11): 801-808.
Yanhua WANG, Xingmin HUANG, Lei ZHANG, Yuanbo GUO, Longsheng CHU, Guangze DAI. Characterization and Simulation of Strain-hardening Behavior of a Cold-rolled Dual Phase Steel of 780 MPa Grade by Means of Modified C-J Method and RVE Model[J]. Chinese Journal of Materials Research, 2017, 31(11): 801-808.

全文: PDF(4309 KB)   HTML
摘要: 

针对经不同工艺热处理的780 MPa级冷轧双相钢板,采用修正的C-J(Crussard-Jaoul)法分析了应变硬化行为,并基于真实组织形貌的代表性体积单元(Representative volume element, RVE)模型模拟其形变行为。结果表明:不同状态的实验钢均表现出较高的初始应变硬化率。岛状和针状马氏体表现出两阶段应变硬化特征,依次对应铁素体塑性变形和铁素体/马氏体协同塑性变形;当马氏体为粗大块状呈现三阶段应变硬化特征,其中第三阶段主要发生马氏体塑性变形时应变硬化能力下降明显。模拟结果表明:当块状和针状马氏体的应变集中分布在铁素体和马氏体界面,岛状马氏体的应变集中分布在马氏体块的连接部位。

关键词 金属材料冷轧双相钢应变硬化修正C-J法RVE模型    
Abstract

The strain-hardening behavior of a cold-rolled dual phase steel of 780MPa grade after different heat treatments was analyzed by a modified Crussard-Jaoul ( C-J ) method, and the deformation behavior of which was simulated with representative volume element (RVE) model. The results show that dual phase steels of different states all exhibit higher initial strain-hardening rate. The steel containing island- and needle-like martensite showed two-stage strain-hardening characteristics which related to the plastic deformation of ferrite and coordination plastic deformation of ferrite and martensite respectively, while the steel containing coarse block-like martensite exhibited three-stage strain-hardening characteristics and of which, the strain hardening capacity of the third stage decreases significantly due to the plastic deformation. The finite element method (FEM) simulation result showed that the strain concentration of the dual phase steel containing coarse block- and needle-like martensite mainly distributed in the interface of ferrite and martensite, while that containing island-like martensite distributed in junctions of martensite grains.

Key wordsmetallic materials    cold-rolled dual phase steel    strain hardening    modified C-J method    RVE model
收稿日期: 2016-12-20     
基金资助:资助项目四川省科技支撑计划
作者简介:

王彦华,男,1992年生,硕士生

Elements C Si Mn Cr Ni Al Fe
Content 0.076 0.150 1.430 0.180 0.042 0.041 Bal.
表1  实验钢的化学成分(质量分数, %)
图1  热处理工艺示意图
图2  不同工艺实验钢的显微组织
F ε/% 0.15 4.05 6.03 9.09 12.98 16.99
σ/MPa 396.70 453.90 470.30 500.08 502.55 521.56
M ε/% 0.18 0.59 0.99 1.96 6.22 11.10
σ/MPa 368.89 604.61 800.01 1028.20 1345.14 1400.00
表2  模拟用铁素体和马氏体的应力-应变数据
图3  不同工艺实验钢的工程和真实应力-应变曲线
Sample YS/MPa UTS/MPa Total elongation/% UTS×TA/GPa% Martensite volume fraction/% Grain size/µm
Cold-rolled 400 800 5.32 4.16 32.06 7.69
T1 350 762 8.07 6.15 55.87 17.55
T2 260 670 11.95 8.02 32.03 6.62
T3 300 732 18.02 13.19 48.41 5.70
表3  不同工艺实验钢的组织及力学性能参数
图4  不同工艺实验钢的ln(dσ/dε)与lnσ关系曲线
图5  三种不同热处理工艺实验钢的有限元模型
图6  不同工艺实验钢的真实应力-应变实测和模拟曲线
Sample m1 m2 m3 ε1/% ε2/%
Cold-rolled 1.17 2.60 17.30 0.90 1.30
T1 1.57 3.20 16.20 0.90 1.60
T2 2.43 5.40 1.60
T3 2.40 5.42 1.50
表4  不同工艺实验钢的ln(dσ/dε)与lnσ关系曲线参数
Εavg/% 0.9 1.6 3 5 10 15
T1 F 1.41% 7.33% 33.12% 64.03%
M 0.02% 0.21% 0.37%
T2 F 0.98% 3.03% 60.50%
M 0.39% 1.30%
T3 F 0.02% 0.14% 5.82% 19.19%
M 0.10% 0.70% 1.60%
表5  不同实验钢在不同平均应变下的应变集中区域比例
图7  T1实验钢在5%应变下铁素体和马氏体的等效塑性应变分布
图8  T2实验钢在10%应变下铁素体和马氏体的等效塑性应变分布
图9  T3实验钢在15%应变下铁素体和马氏体的等效塑性应变分布
[1] Sodjit S, Uthaisangsuk V.Microstructure based prediction of strain hardening behavior of dual phase steels[J]. Mater. Des., 2012, 41: 370
[2] Bleck W, Papaefthymiou S, Frehn A.Microstructure and tensile properties in dual phase and trip steels[J]. Steel Res. Int., 2004, 75: 704
[3] Sarwar M, Priestner R.Influence of ferrite-martensite microstructural morphology on tensile properties of dual-phase steel[J]. J. Mater. Sci., 1996, 31: 2091
[4] Dai Q F, Song R B, Cai H J, et al.Tensile mechanical behaviour of ultra-high strength cold rolled dual phase steel DP1000 at high strain rates[J]. Chin. J. Mater. Res., 2013, 27: 25(代启锋, 宋仁伯, 蔡恒君等. 超高强冷轧双相钢DP1000高应变速率下的拉伸性能[J]. 材料研究学报, 2013, 27: 25)
[5] Sun X, Choi K S, Liu W N, et al.Predicting failure modes and ductility of dual phase steels using plastic strain localization[J]. Int. J. Plast., 2009, 25: 1888
[6] Kadkhodapour J, Schmauder S, Raabe D, et al.Experimental and numerical study on geometrically necessary dislocations and non-homogeneous mechanical properties of the ferrite phase in dual phase steels[J]. Acta Mater., 2011, 59: 4387
[7] Kim N J, Thomas G.Effects of morphology on the mechanical behavior of a dual phase Fe/2Si/0.1C steel[J]. Metall. Trans., 1981, 12A: 483
[8] Karmakar A, Ghosh M, Chakrabarti D.Cold-rolling and inter-critical annealing of low-carbon steel: Effect of initial microstructure and heating-rate[J]. Mater. Sci. Eng., 2013, 564A: 389
[9] Ahmad E, Manzoor T, Ziai M M A, et al. Effect of martensite morphology on tensile deformation of dual-phase steel[J]. J. Mater. Eng. Perform., 2012, 21: 382
[10] Rigsbee J M, VanderArend P J. Laboratory studies of microstructure and structure-property relationship in dual-phase HSLA steels [A]. Formable HSLA and dual-phase steels[C]. New York: TMS-AIME, 1979: 56
[11] Lanzillotto C A N, Pickring F B. Structure-property relationships in dual-phase steels[J]. Met. Sci., 1982, 16: 371
[12] Zhu G M, Kuang S, Chen G J, et al.Effect of martensite on yield characteristics of cold rolled C-Si-Mn dual phase steel[J]. J. Mater. Eng., 2011, (4): 66(朱国明, 邝霜, 陈贵江等. 马氏体对C-Si-Mn冷轧双相钢屈服特性的影响[J]. 材料工程, 2011, (4): 66)
[13] Kuang S, Kang Y L, Yu H, et al.Strain-hardening characteristics of a cold rolled C-Si-Mn dual phase steel[J]. J. Mater. Eng., 2009, (2): 11(邝霜, 康永林, 于浩等. C-Si-Mn冷轧双相钢的应变硬化特性[J]. 材料工程, 2009, (2): 11)
[14] Lawson R D, Matlock D K, Krauss G.The effect of microstructure on the deformation behavior and mechanical properties of a dual-phase steel [A]. Fundamentals of Dual-Phase Steels[C]. New York: AIME, 1984: 347
[15] Marvi-Mashhadi M, Mazinani M, Rezaee-Bazzaz A.FEM modeling of the flow curves and failure modes of dual phase steels with different martensite volume fractions using actual microstructure as the representative volume[J]. Comput. Mater. Sci., 2012, 65: 197
[16] Paul S K.Real microstructure based micromechanical model to simulate microstructural level deformation behavior and failure initiation in DP 590 steel[J]. Mater. Des., 2013, 44: 397
[17] Wu J, Yang Q X, Zhang C L.Numerical simulation of stress-strain curve of weathering dual-phase steel [A]. Proceedings of the 2005 National Conference on Computational Materials, Simulation and Image Analysis[C]. Qinhuangdao: The Chinese Society for Metals, Chinese Society of Stereology, 2005(吴晶, 扬庆祥, 张春玲. 耐候双相钢应力-应变曲线数值模拟 [A]. 2005年全国计算材料、模拟与图像分析学术会议论文集[C]. 秦皇岛: 中国金属学会, 中国体视学学会, 2005)
[18] Mazinani M, Poole W J.Effect of martensite plasticity on the deformation behavior of a low-carbon dual-phase steel[J]. Metall. Mater. Trans., 2007, 38A: 328
[19] Marvi-Mashhadi M, Mazinani M, Rezaee-Bazzaz A.FEM modeling of the flow curves and failure modes of dual phase steels with different martensite volume fractions using actual microstructure as the representative volume[J]. Comput. Mater. Sci., 2012, 65: 197
[20] Pouranvari M.Tensile strength and ductility of ferrite-martensite dual phase steels[J]. MJoM, 2010, 16: 187
[21] Kadkhodapour J, Schmauder S, Raabe D, et al.Experimental and numerical study on geometrically necessary dislocations and non-homogeneous mechanical properties of the ferrite phase in dual phase steels[J]. Acta Mater., 2011, 59: 4387
[22] Zhao Z Z, Ye J Y, Wang Z G, et al.Strain-hardening behavior of cold rolled dual phase steel with high strength[J]. J. Shenyang Univ. Technol., 2013, 35: 36(赵征志, 叶洁云, 汪志刚等. 高强度冷轧双相钢应变硬化行为[J]. 沈阳工业大学学报, 2013, 35: 36)
[23] Colla V, De Sanctic M, Dimatteo A, et al. Strain hardening behavior of dual-phase steels [J]. Metall. Mater. Trans., 2009, 40 A : 2557
[1] 毛建军, 富童, 潘虎成, 滕常青, 张伟, 谢东升, 吴璐. AlNbMoZrB系难熔高熵合金的Kr离子辐照损伤行为[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] 赵政翔, 廖露海, 徐芳泓, 张威, 李静媛. 超级奥氏体不锈钢24Cr-22Ni-7Mo-0.4N的热变形行为及其组织演变[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] 幸定琴, 涂坚, 罗森, 周志明. C含量对VCoNi中熵合金微观组织和性能的影响[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] 欧阳康昕, 周达, 杨宇帆, 张磊. LPSOMg-Y-Er-Ni合金的组织和拉伸性能[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] 徐利君, 郑策, 冯小辉, 黄秋燕, 李应举, 杨院生. 定向再结晶对热轧态Cu71Al18Mn11合金的组织和超弹性性能的影响[J]. 材料研究学报, 2023, 37(8): 571-580.
[8] 熊诗琪, 刘恩泽, 谭政, 宁礼奎, 佟健, 郑志, 李海英. 固溶处理对一种低偏析高温合金组织的影响[J]. 材料研究学报, 2023, 37(8): 603-613.
[9] 刘继浩, 迟宏宵, 武会宾, 马党参, 周健, 徐辉霞. 喷射成形M3高速钢热处理过程中组织的演变和硬度偏低问题[J]. 材料研究学报, 2023, 37(8): 625-632.
[10] 由宝栋, 朱明伟, 杨鹏举, 何杰. 合金相分离制备多孔金属材料的研究进展[J]. 材料研究学报, 2023, 37(8): 561-570.
[11] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[12] 王昊, 崔君军, 赵明久. 镍基高温合金GH3536带箔材的再结晶与晶粒长大行为[J]. 材料研究学报, 2023, 37(7): 535-542.
[13] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.
[14] 秦鹤勇, 李振团, 赵光普, 张文云, 张晓敏. 固溶温度对GH4742合金力学性能及γ' 相的影响[J]. 材料研究学报, 2023, 37(7): 502-510.
[15] 刘天福, 张滨, 张均锋, 徐强, 宋竹满, 张广平. 缺口应力集中系数对TC4 ELI合金低周疲劳性能的影响[J]. 材料研究学报, 2023, 37(7): 511-522.