Please wait a minute...
材料研究学报  2016, Vol. 30 Issue (7): 553-560    DOI: 10.11901/1005.3093.2015.577
  本期目录 | 过刊浏览 |
含PBSu和PBAu链段可降解聚酯酰脲的合成及性能研究*
戴红, 刘跃军(), 谭海英, 崔玲娜, 杨伟
湖南工业大学包装新材料与技术重点实验室 株洲 412007
Synthesis and Properties of Polyester Ureide Multiblock Copolymers Composed of Poly (butylene-succinate-uera) and Poly (adipate-succinate-uera)
DAI Hong, LIU Yuejun**(), TAN Haiying, CUI Lingna, YANG Wei
(Key Laboratory of New Materials and Technology for Packaging, HunanUniversity of Technology, Zhuzhou 412007, China)
引用本文:

戴红, 刘跃军, 谭海英, 崔玲娜, 杨伟. 含PBSu和PBAu链段可降解聚酯酰脲的合成及性能研究*[J]. 材料研究学报, 2016, 30(7): 553-560.
Hong DAI, Yuejun LIU, Haiying TAN, Lingna CUI, Wei YANG. Synthesis and Properties of Polyester Ureide Multiblock Copolymers Composed of Poly (butylene-succinate-uera) and Poly (adipate-succinate-uera)[J]. Chinese Journal of Materials Research, 2016, 30(7): 553-560.

全文: PDF(1019 KB)   HTML
摘要: 

以丁二酸-丁二醇-尿素(PBSu)聚酯酰脲共聚物与己二酸-丁二醇-尿素(PBAu)聚酯酰脲共聚物为预聚物, 甲苯-2, 4-二异氰酸酯(TDI)为扩链剂, 通过熔融共聚成功地制备了可降解聚酯酰脲嵌段共聚物(PBSu-co-PBAu)。采用核磁共振氢谱(1H-NMR)、热重分析仪(TG)、差示扫描量热仪(DSC)、X射线衍射仪(XRD)、万能拉力试验机以及水降解测试表征了共聚物的结构与性能。研究发现, 随着PBAu含量的增加, 嵌段共聚物塑性提高。合成得到的嵌段共聚物具有优异的热稳定性能和良好的生物降解性能, 且具有比均聚物PBSu和PBAu以及未改性的聚酯PBS和PBA更好的拉伸性能。此外, 还可以通过改变PBSu和PBAu的进料比, 对材料的热性能、降解性能和力学性能进行一定范围的调节。

关键词 有机高分子材料嵌段共聚物扩链反应生物降解性能    
Abstract

A series of polyester ureidemultiblock copolymers (PBSu-co-PBAu) composed of the pre-prepared poly(butylene-succinate-urea) (PBSu) and poly(adipate-succinate-uera) (PBAu) were successfully synthesizedby melt polymerization processes with toluene-2, 4-diisocyanate(TDI) as a chain extender. Then the structure, thermal properties, mechanical properties and biodegradable properties of the copolymers were characterized by means of1H-NMR, DSC, TG, XRD, universal tensile machine and hydrolytictest respectively. The results indicated that the toughness of multiblock copolymers was enhanced by the incorporation of PBAu. The multiblock copolymers possessed excellent thermal stability and biodegradable properties, as well as tensile properties superiorto the homopolymers PBSu and PBAu, the unmodified-PBS and -PBA. Besides, the thermal properties, biodegradability and mechanical properties of the multiblock copolymers can be adjusted by varying the dose of PBSu and PBAu.

Key wordsorganic polymer materials    multiblock copolymers    chain extension    biodegradability
收稿日期: 2015-10-15     
基金资助:* 国家自然科学基金11372108,湖南省自然科学基金14JJ5021和湖南省高校创新平台开放基金13K098资助
作者简介: To whom correspondence should be addressed, Tel: (0731)22183339, E-mail: yjliu_2005@126.com

本文联系人: 刘跃军, 教授

图1  PBAu/PBA(A)和PBSu/PBS(B)的核磁氢谱图
图2  嵌段共聚物的核磁氢谱图
Sample Feed composition Found composition
FPBSu FPBAu FTDI FPBSu FPBAu FTDI
PBSu-PBAu100-0 93.98 - 6.02 93.83 - 6.17
PBSu-PBAu10-90 84.73 9.35 5.92 84.81 9.17 6.02
PBSu-PBAu30-70 65.96 28.21 5.83 66.07 28.14 5.79
PBSu-PBAu50-50 47.09 47.16 5.75 48.79 45.23 5.98
PBSu-PBAu30-70 28.16 65.77 6.07 30.14 63.89 5.97
PBSu-PBAu10-90 9.46 84.75 5.79 11.61 82.76 5.63
PBSu-PBAu0-100 - 94.13 5.87 94.24 - 5.76
表1  嵌段共聚物和均聚物的组分含量
图3  共聚物的TG曲线
Sample Td/ oC T50%/oC T95%/oC
PBSu-PBAu100-0 366 404 437
PBSu-PBAu90-10 365 400 436
PBSu-PBAu70-30 361 398 431
PBSu-PBAu50-50 361 396 431
PBSu-PBAu30-70 360 396 420
PBSu-PBAu10-90 359 393 416
PBSu-PBAu0-100 355 391 412
PBS 373 409 439
PBA 368 400 417
表2  共聚物的TG数据分析
图4  共聚物的DSC曲线(a)二次升温曲线, (b)降温曲线
Sample Tm/oC Tc/ oC △Hm/ Jg-1 △Hc/ Jg-1 Xc/ %
Tm-S Tm-A Tc-S Tc-A △Hm-S △Hm-A △Hc-S △Hc-A Xc-S Xc-A Xc-T
PBSu-PBAu100-0 113.2 - 72.8 - 61.3 - 62.4 - 55.6 - 55.6
PBSu-PBAu90-10 110.3 - 69.9 - 59.3 - 64.5 - 53.8 - 53.8
PBSu-PBAu70-30 109.8 49.8 67.6 24.7 41.7 4.9 41.7 0.8 37.8 5.4 43.2
PBSu-PBAu50-50 109.3 49.4 65.7 24.8 35.6 15.1 37.2 15.1 32.3 16.6 48.9
PBSu-PBAu30-70 108.0 51.1 61.8 25.3 23.4 29.5 34.5 29.3 21.2 32.5 53.7
PBSu-PBAu10-90 106.1 55.4 - 25.8 15.0 34.8 - 39.9 13.6 38.3 51.9
PBSu-PBAu0-100 - 56.0 - 25.9 - 36.2 - 48.6 - 39.8 39.8
PBS 111.5 - 74.9 - 65.6 - 58.6 - 58.5 - 58.5
PBA - 54.3 - 27.3 - 42.3 - 41.2 - 43.2 43.2
表3  共聚物的DSC数据分析
图5  共聚物的XRD曲线
图6  共聚物的结晶度和拉伸强度的关系曲线(注: 图中X坐标轴上的数字表示聚酯酰脲嵌段共聚物中PBAu质量的百分含量/%)
Sample Tensile strength
/ MPa
Elongation at
break / %
PBSu-PBAu100-0 41.1±3.5 12±7
PBSu-PBAu90-10 38.5±1.6 16±2
PBSu-PBAu70-30 21.0±2.8 121±12
PBSu-PBAu50-50 23.2±2.0 139±9
PBSu-PBAu30-70 24.6±1.4 142±16
PBSu-PBAu10-90 24.1±4.5 186±24
PBSu-PBAu0-100 15.3±0.7 215±21
PBS 36.4±1.8 25±14
PBA 14.4±0.6 226±6
表4  共聚物的拉伸性能
图7  共聚物的结晶度和失重率的关系曲线(注: 图中X坐标轴上的数字表示聚酯酰脲嵌段共聚物中PBAu质量的百分含量/%)
1 J. Xu, B. H. Guo,Poly(butylene succinate) and its copolymers: research, development and industrialization, Biotechnol. J., 5(11), 1149(2010)
2 B. D. Ahn, S. H. Kim, Y. H. Kim, J. S. Yang, Synthesis and characterization of the biodegradable copolymers from succinic acid and adipic acid with 1, 4-butanediol, J. Appl. Polym. Sci., 82(11), 2808(2001)
doi: 10.1002/app.2135
3 G. Z. Papageorgiou, D. N. Bikiaris, Synthesis, cocrystallization, and enzymatic degradation of novel poly(butylene-co-propylene succinate) copolymers, Biomacromolecules, 8(8), 2437(2007)
doi: 10.1021/bm0703113 pmid: 17655353
4 SUN Yuanbi, XU Jun, XU Yongxiang, YAN Litang, GUO Baohua,Synthesis and characterization of biodegradable poly(butylene succinate-co-butylene methyl succinate), Chem. J. Chinese. Univ., 27(2), 360(2006)
4 (孙元碧, 徐军, 徐永祥, 燕立唐, 郭宝华, 生物可降解聚丁二酸/甲基丁二酸丁二酯系列共聚物的合成和表征, 高等学校化学学报, 27(2), 360(2006))
5 Y. Tsai, L. C. Jheng, C. Y. Hung, Synthesis, properties and enzymatic hydrolysis of biodegradable alicyclic/aliphatic copolyesters based on 1, 3/1, 4-cyclohexanedimethanol, Polym. Degrad. Stab., 95(1), 72(2010)
doi: 10.1016/j.polymdegradstab.2009.10.006
6 P. Chaiwutthinan, S. Chuayjuljit, T. Leejarkpai, Use of microcrystalline cellulose prepared from cotton fabric waste to prepare poly(butylene succinate) composites, Advanced. Materials Research, 356, 430(2011)
doi: 10.4028/www.scientific.net/AMR.356-360.430
7 HOU Shujia, The modification researeh of PLA/PBS blends, Master’s Thesis (Zhengzhou, Zhengzhou Univerisity, 2010)
7 (侯树家, 聚乳酸/聚丁二酸丁二醇醋共混体系的改性研究, 硕士学位论文 (郑州, 郑州大学, 2010))
8 P. Nugroho, H. Mitomo, F. Yoshii, T. Kume, K. Nishimura, Improvement of processability of PCL and PBS blend by irradiation and its biodegradability, Macromol. Mater. Eng., 286, 316(2001)
doi: 10.1002/1439-2054(20010501)286:53.0.CO;2-N
9 LIU Yuejun, XIE Wei, LIU Yiwu, LIU Pang, Synthesis, characterization of adipic acid-1, 4butanediol-urea copolymer, Journal of Functional Materials, 16(43), 2176(2012)
9 (刘跃军, 谢伟, 刘亦武, 刘磅, 己二酸-1, 4-丁二醇-尿素共聚物的合成与表征, 功能材料, 16(43), 2176(2012))
doi: 10.3969/j.issn.1001-9731.2012.16.014
10 LIU Pang, LIU Yuejun, Preparation and properties of a novel biodegradable copolymer film, Packing Journal, 6(3), 21(2014)
10 (刘磅, 刘跃军, 一种新型可降解共聚物薄膜的制备与性能研究, 包装学报, 6(3), 21(2014))
doi: 10.3969/j.issn.1674-7100.2014.03.004
11 H. Chen, X. Wang, J. Zeng, L. Li, F. Dong, Y. Wang,A novel multiblock poly(ester urethane) based onpoly(butylene succinate) and poly(ethylene succinate-co-ethyleneterephthalate), Ind. Eng. Chem. Res., 50(4), 2065(2011)
12 J. Zhang, J. Xu, H. Wang, W. Jin, J. Li,Synthesis of multiblock thermoplastic elastomers based on biodegradable poly(lactic acid) and polycaprolactone, Mater. Sci. Eng. C., 29(3), 889(2009)
13 D. Pepic, E. Zagar, M. Zigon, A. Krzan, M. Kunaver, J. Djonlagic,Synthesis and characterization of biodegradable aliphatic copolyesters with poly(ethylene oxide) soft segments, Eur. Polym. J., 44(3), 904(2008)
14 XIE Wei, Synthesis, characterization and properities of adipic acid-1, 4butanediol-urea copolymer, Master’s Thesis, (Zhuzhou, Hunan Univerisity of Technology, 2012)
14 (谢伟, 己二酸-1, 4-丁二醇-尿素共聚物的合成、表征及性能, 硕士学位论文, (株洲, 湖南工业大学, 2012))
15 ZHANG Shiping, GONG Ming, SHI Suqing, GONG Yongkuan,Research progress of poly(butylenes succinate), Polym. Bull., 14(3), 86(2011)
15 (张世平, 宫铭, 党媛, 史素青, 宫永宽, 聚丁二酸丁二醇酯的研究进展, 高分子通报, 14(3), 86(2011))
16 L. Zheng, C. Li, Z. Wang, J. Wang, Y. Xiao, D. Zhang, G. Guan,Novel biodegradable and double crystalline multiblock copolymers comprising of poly(butylenes succinate) and poly(ε-caprolactone): synthesis, characterization, and properities, Ind. Eng. Chem. Res., 51(21), 7264(2012)
17 HE Manjun, ZHANG Hongdong, CHEN Weixiao, DONG Xixia, Polymer Physics, (Shanghai, Fudan University Press, 2011)p. 169
17 (何曼君, 张红东, 陈维孝, 董西侠, 高分子物理, (上海, 复旦大学出版社, 2011)p. 169)
18 HUANG Yong, HU Jingying, ZHOU Tao, ZHOU Ting, ZHANG Aimin,Synthesis and characterization of multiblock copolymers comprising of poly(butylene succinate)copolymers with poly(tetramethylene oxide)soft segments, Polym. Mater. Sci. Eng., 28(4), 22(2012)
18 (黄勇, 胡晶莹, 周涛, 周庭, 张爱民, PBS/PTMO嵌段共聚物的合成及表征, 高分子材料科学与工程, 28(4), 22(2012))
19 L. Zheng, C. Li, W. Huang, X. Huang, D. Zhang, G. Guan, Y. Xiao, D. Wang,Synthesis of high-impact biodegradable multiblock copolymers comprising of poly(butylenes succinate) and poly(1, 2-propylene succinate) with hexamethylenediisocyanate as chain ertender, Polym. Adv. Technol., 22(2), 279(2011)
20 Y. Ichikawa, H. Kondo, Y. Igarashi, K. Noguchi, K. Okuyama, J. Washiyama, Crystal structures of α and β forms of poly (tetramethylene succinate), Polymer, 41(12), 4719(2000)
doi: 10.1016/S0032-3861(99)00659-X
21 V. Sehhar, S. Gopalakrishnan, K. A. Devi,Studies on allophanate-urethane networks based on hydroxy/terminated poly butadiene: effect of isocyanate type on the network characteristics, Eur. Polym. J., 39(6), 1281(2003)
22 Z. Gan, K. Kuwabara, M. Yamamoto, H. Abe, Y. Doi,Solid-state structures and thermal properties of aliphatic-aromatic poly(butylene adipate-co-butylene terephthalate) copolyesters, Polym. Degrad. Stab., 83(2), 289(2004)
[1] 叶姣凤, 王飞, 左洋, 张钧翔, 罗晓晓, 冯利邦. 兼具高强度、高韧性和自修复性能的环氧树脂改性热可逆聚氨酯[J]. 材料研究学报, 2023, 37(4): 257-263.
[2] 李瀚楼, 焦晓光, 朱欢欢, 赵晓欢, 矫庆泽, 冯彩虹, 赵芸. 支链含氟聚酯的合成和性能[J]. 材料研究学报, 2023, 37(4): 315-320.
[3] 马逸舟, 赵秋莹, 杨路, 裘进浩. 热塑型聚酰亚胺/聚偏氟乙烯全有机复合薄膜的制备及其介电储能[J]. 材料研究学报, 2023, 37(2): 89-94.
[4] 殷洁, 胡云涛, 刘慧, 杨逸霏, 王艺峰. 基于电沉积技术构建聚苯胺/海藻酸膜及电化学性能研究[J]. 材料研究学报, 2022, 36(4): 314-320.
[5] 申延龙, 李北罡. 磁性氨基酸功能化海藻酸铝凝胶聚合物的制备及对偶氮染料的超强吸附[J]. 材料研究学报, 2022, 36(3): 220-230.
[6] 龙庆, 王传洋. 不同碳黑含量PMMA的热降解行为和动力学分析[J]. 材料研究学报, 2022, 36(11): 837-844.
[7] 蒋平, 吴丽华, 吕太勇, José Pérez-Rigueiro, 王安萍. 蜘蛛大壶状腺丝的反复拉伸力学行为和性能[J]. 材料研究学报, 2022, 36(10): 747-759.
[8] 鄢俊, 杨进, 王涛, 徐桂龙, 李朝晖. 有机硅油改性水性酚醛的制备及其性能[J]. 材料研究学报, 2021, 35(9): 651-656.
[9] 张昊, 李帆, 常娜, 王海涛, 程博闻, 王攀磊. 羧酸型接枝淀粉吸附树脂的制备和对染料的去除性能[J]. 材料研究学报, 2021, 35(6): 419-432.
[10] 孙丽颖, 钱建华, 赵永芳. AgNWs-TPU/PVDF柔性薄膜电容传感器的制备和性能[J]. 材料研究学报, 2021, 35(6): 441-448.
[11] 唐开元, 黄洋, 黄湘舟, 葛颖, 李娉婷, 袁凡舒, 张威威, 孙东平. 碳化细菌纤维素的理化性质及其在甲醇电催化中的应用[J]. 材料研究学报, 2021, 35(4): 259-270.
[12] 苏晨文, 张婷玥, 郭丽伟, 李乐, 杨苹, 刘艳秋. 用于模拟细胞外基质的硫醇-烯水凝胶的制备[J]. 材料研究学报, 2021, 35(12): 903-910.
[13] 张向阳, 章奇羊, 汤涛, 郑涛, 柳浩, 刘国金, 朱海霖, 朱海峰. 基于MOFs的复合材料制备及其对亚甲基蓝染料的吸附性能[J]. 材料研究学报, 2021, 35(11): 866-872.
[14] 万里鹰, 肖洋, 张伦亮. 基于热可逆Diels-Alder动态共价键PU-DA体系的制备和性能[J]. 材料研究学报, 2021, 35(10): 752-760.
[15] 张翠歌, 胡良, 卢祖新, 周佳慧. 基于海藻酸自组装胶体粒子的制备及其乳化性能[J]. 材料研究学报, 2021, 35(10): 761-768.