Please wait a minute...
材料研究学报  2016, Vol. 30 Issue (10): 781-786    DOI: 10.11901/1005.3093.2016.132
  研究论文 本期目录 | 过刊浏览 |
LiAlH4/4MgH2+5%M(M=0, NbSi2, Ni2Si, Nb2O5)复合材料的制备和储氢性能*
黄显吞(),卿培林,覃昌生
百色学院材料科学与工程学院 百色 533000
Preparation and Hydrogen Storage Performance of Composite Materials of LiAlH4/4MgH2+5%M(M=0, NbSi2, Ni2Si, Nb2O5)
Xiantun HUANG(),Peilin QING,Changsheng QIN
Department of Materials Science and Engineering, Baise College, Baise 533000, China
引用本文:

黄显吞,卿培林,覃昌生. LiAlH4/4MgH2+5%M(M=0, NbSi2, Ni2Si, Nb2O5)复合材料的制备和储氢性能*[J]. 材料研究学报, 2016, 30(10): 781-786.
Xiantun HUANG, Peilin QING, Changsheng QIN. Preparation and Hydrogen Storage Performance of Composite Materials of LiAlH4/4MgH2+5%M(M=0, NbSi2, Ni2Si, Nb2O5)[J]. Chinese Journal of Materials Research, 2016, 30(10): 781-786.

全文: PDF(0 KB)   HTML
摘要: 

应用机械合金化技术制备LiAlH4/4MgH2以及LiAlH4/4MgH2+5%M(质量分数, M = NbSi2, Ni2Si, Nb2O5)复合材料, 并对其组织、热性质以及吸放氢动力学进行了表征。结果表明, 添加NbSi2、Ni2Si和Nb2O5能提高复合材料的吸放氢动力学性能和改善热力学性质。添加NbSi2、Ni2Si和Nb2O5使复合材料的氢化反应低温段的峰值温度分别降低了19 K、15 K和23 K, 使复合物放氢反应的表观活化能从145.71 kJ/mol分别降低到142.12 kJ/mol和115.12 kJ/mol。

关键词 复合材料LiAlH4催化剂储氢性能    
Abstract

Composite materials of LiAlH4/4MgH2+5% (mass fraction) M (M = NbSi2, Ni2Si and Nb2O5 respectively) were prepared by mechanical alloying in hydrogen atmosphere, and the hydrogen storage properties of the composite materials, as well as LiAlH4 and MgH2 were investigated. The results show that the kinetics property and thermodynamic property of the 4MgH2/TiH2 can be improved by adding NbSi2, Ni2Si and Nb2O5 respectively. DTA curves (by a heating rate 5 K/min) show that the peak temperature within the low temperature range of the hydrogenation for the corresponding composite materials decreased by 19 K, 15 K and 23 K respectively, especially the catalyst effect of which become more obvious after adding Ni2Si and Nb2O5. The activation energy of the LiAlH4/4MgH2 composite is 145.71 kJ/mol, however, after adding Ni2Si and Nb2O5, which decreases to 142.12 kJ/mol and 115.12 kJ/mol respectively.

Key wordscomposite    LiAlH4    catalyst    hydrogen storage performance
收稿日期: 2016-03-14     
基金资助:* 广西自然科学基金2014GXNSFAA118346和广西高校特色专业及课程一体化建设GXTSZY024资助项目
图1  LiAlH4/4MgH2以及LiAlH4/4MgH2+5%M(M=NbSi2, Ni2Si, Nb2O5)复合材料的XRD谱
图2  LiAlH4/4MgH2以及LiAlH4/4MgH2+5%M(M=NbSi2, Ni2Si, Nb2O5)复合材料的SEM照片
图3  LiAlH4/4MgH2以及LiAlH4/4MgH2+5%M(M=NbSi2, Ni2Si, Nb2O5)复合材料的红外光谱
图4  LiAlH4/4MgH2以及LiAlH4/4MgH2+5%M(M=NbSi2, Ni2Si, Nb2O5)复合材料的吸氢动力学
图5  LiAlH4/4MgH2+5%NbSi2复合材料在573 K、598 K、623 K、648 K的吸氢动力学
图6  LiAlH4/4MgH2+5%NbSi2复合材料的吸氢ln[-ln(1-a)]和lnt关系曲线
图7  LiAlH4/4MgH2+5%NbSi2复合材料的吸氢(1000/RT)-lnk曲线
图8  LiAlH4/4MgH2+5%M(M=0, NbSi2, Ni2Si, Nb2O5)复合材料的DTA曲线
图9  LiAlH4/4MgH2+5%M(M=0, NbSi2, Ni2Si, Nb2O5)复合材料的Kissinger方程曲线
1 XU Wei, TAO Zhanliang, CHEN Jun, Progress of research on hydrogenstorage, Progress in Chemistry, 18(2/3), 200(2006)
1 (许炜, 陶占良, 陈军, 储氢研究进展, 化学进展, 18(2/3), 200(2006))
2 LIAO Qian, ZHANG Jing, DING Dejun, Progress in novel light weight hydrogen materials-metal alanate, Rare Metals, 36(5), 483(2012)
2 (廖骞, 张静, 丁德军, 张立华, 尹泓卜, 新型轻质储氢材料—金属铝氢化物的研究进展, 稀有金属, 36(5), 483(2012))
3 R. G. Chen, X. H. Wang, L. Xu, L. X. Chen, S. Q. Li, C. P. Chen, An investigation on the reaction mechanism of LiAlH4-MgH2 hydrogen storage system, Materials Chemistry and Physics, 124(1), 83(2010)
4 M. Ismail, Y. Zhao, X. B. Yu, S. X. Dou, Effect of different additives on the hydrogen storage properties of the MgH2-LiAlH4 destabilized system, RSC Advances, 1(3), 408(2011)
5 S. S. Liu, L. X. Sun, F. Xu, J. Zhang, Z. Cao, Y. L. Liu, Improved dehydrogenation of MgH2-Li3AlH6 mixture with TiF3 addition, International Journal of Hydrogen Energy, 36(18), 11785(2011)
6 J. Cui, H. Wang, J. W. Liu, L. Z. Ouyang, Q. G. Zhang, D. L. Sun, X. D. Yao, M. Zhu, Remarkable enhancement in dehydrogenation of MgH2 by a nano-coating of multi-valence Ti-based catalysts, Journal of Materials Chemistry A, 1(18), 5603(2013)
7 A. Grzech, U. Lafont, P. C. M. M. Magusin, F. M. Mulder, Microscopic study of TiF3 as hydrogen storage catalyst for MgH2, Journal of Physical Chemmistry C, 116(49), 26027(2012)
8 M. G. Veron, H. troiani, F. C. Gennari, Synergetic effect of Co and carbon nanotubes on MgH2 sorption properties, Carbon, 49(7), 2413(2011)
9 Z. Chen, C. Tian, H. Pang, H. B. Yang, Rehydrogenation performance of an MgH2-Nb2O5 system modified by heptane and acetone, Internaltional Journal of Hydrogen Energy, 35(15), 8289(2010)
10 L. B. Lurio, D. Lumma, A.R. Sandy, M. A. Borthwick, P. Falus, S. G. J. Mochrie, J. F. Pelletier, M. Sutton, L. Regan, Absence of scaling for the intermediate scattering function of a hard-sphere suspension: Static and dynamic x-ray scattering from concentrated polystyrene latex spheres, Physical Review Letters, 84(4), 785(2000)
11 J. R. Ares, K. F. Aguey-Zinsou, M. Porcu, J. M. Sykes, A. Domheim, T. Klassen, R. Bormann, Thermal and mechanically activated decomposition of LiAlH4, Materials Research Bulietin, 3(5), 1263(2008)
12 M. J. Setten, S. Er, B. Geert, G. Brocks, R. A. Groot, G. A. Wijs, First-principles study of the optical properties of MgxTi(1-x)H2, Physical Review B, 79(12), 125(2009)
13 S. X. Tao, W.P. Kallsvaart, M. Danaie, D. Mitlin, P. Notten, S. R. Van, A. P. Jansen, First principle study of hydrogen diffusion in equilibrium rutile, rutile with deformation twins and fluorite polymorph of Mg hydride, International Journal of Hydrogen Energy, 36(18), 11802(2011)
14 G. Liang, J. Huot, S. Boily, N. A. Van, R. Schulz, Hydrogen storage properties of the mechanically milled MgH2-V nanocomposite, Journal of Alloys and Compounds, 291(1-2), 295(1999)
15 X. Tan, C.T. Harrower, B. S. Amirkhiz, D. Mitlin, Nano-scale bi-layer Pd/Ta, Pd/Nb, Pd/Ti and Pd/Fe catalysts for hydrogen sorption in magnesium thin films, International Journal of Hydrogen Energy, 34(18), 7741(2009)
16 P. Muthukumar, A. Satheesh, M. Linder, R. Mertz, M. Groll, Studies on hydriding kinetics of some La-based metal hydride alloys, International Journal of Hydrogen Energy, 34(17), 7253(2009)
17 J. F. Rnaendez, C. R. Sanchez, Rate determining step in the absorption and desorption of hydrogen by magnesium, Journal of Alloys and Compounds, 340(1-2), 189(2002)
18 N. S. Norrberg, T. S. Arthur, S. J. Fredrick, A. L. Prieto, Size-dependent hydrogen storage properties of Mg nanocrystals prepared from solution, Journal of the American Chemical Society, 133(28), 10679(2011)
19 H. E. Kissinge, Reaction kinetics in differential thermal analysis, Analytical Chemistry, 29(11), 1702(1957)
[1] 潘新元, 蒋津, 任云飞, 刘莉, 李景辉, 张明亚. 热挤压钛/钢复合管的微观组织和性能[J]. 材料研究学报, 2023, 37(9): 713-720.
[2] 刘瑞峰, 仙运昌, 赵瑞, 周印梅, 王文先. 钛合金/不锈钢复合板的放电等离子烧结技术制备及其性能[J]. 材料研究学报, 2023, 37(8): 581-589.
[3] 季雨辰, 刘树和, 张天宇, 查成. MXene在锂硫电池中应用的研究进展[J]. 材料研究学报, 2023, 37(7): 481-494.
[4] 王伟, 解泽磊, 屈怡珅, 常文娟, 彭怡晴, 金杰, 王快社. Graphene/SiO2 纳米复合材料作为水基润滑添加剂的摩擦学性能[J]. 材料研究学报, 2023, 37(7): 543-553.
[5] 张藤心, 王函, 郝亚斌, 张建岗, 孙新阳, 曾尤. 基于界面氢键结构的石墨烯/聚合物复合材料的阻尼性能[J]. 材料研究学报, 2023, 37(6): 401-407.
[6] 邵萌萌, 陈招科, 熊翔, 曾毅, 王铎, 王徐辉. C/C-ZrC-SiC复合材料的Si2+ 离子辐照行为[J]. 材料研究学报, 2023, 37(6): 472-480.
[7] 李海龙, 牟娟, 王媛媛, 葛绍璠, 刘春明, 张海峰, 朱正旺. MnNiCoCrFe多孔高熵合金的电催化析氧性能[J]. 材料研究学报, 2023, 37(5): 332-340.
[8] 张锦中, 刘晓云, 杨健茂, 周剑锋, 查刘生. 温度响应性双面纳米纤维的制备和性能[J]. 材料研究学报, 2023, 37(4): 248-256.
[9] 王刚, 杜雷雷, 缪自强, 钱凯成, 杜向博文, 邓泽婷, 李仁宏. 聚多巴胺改性碳纤维增强尼龙6复合材料的界面性能[J]. 材料研究学报, 2023, 37(3): 203-210.
[10] 林师峰, 徐东安, 庄艳歆, 张海峰, 朱正旺. TiZr基非晶/TC21双层复合材料的制备和力学性能[J]. 材料研究学报, 2023, 37(3): 193-202.
[11] 苗琪, 左孝青, 周芸, 王应武, 郭路, 王坦, 黄蓓. 304不锈钢纤维/ZL104铝合金复合泡沫的孔结构、力学、吸声性能及其机理[J]. 材料研究学报, 2023, 37(3): 175-183.
[12] 张开银, 王秋玲, 向军. FeCo/SnO2 复合纳米纤维的制备及其吸波性能[J]. 材料研究学报, 2023, 37(2): 102-110.
[13] 周聪, 昝宇宁, 王东, 王全兆, 肖伯律, 马宗义. (Al11La3+Al2O3)/Al复合材料的高温性能及其强化机制[J]. 材料研究学报, 2023, 37(2): 81-88.
[14] 罗昱, 陈秋云, 薛丽红, 张五星, 严有为. 钠离子电池双层碳包覆Na3V2(PO4)3 正极材料的超声辅助溶液燃烧合成及其电化学性能[J]. 材料研究学报, 2023, 37(2): 129-135.
[15] 刘志华, 岳远超, 丘一帆, 卜湘, 阳涛. g-C3N4/Ag/BiOBr复合材料的制备及其光催化还原硝酸盐氮[J]. 材料研究学报, 2023, 37(10): 781-790.