Please wait a minute...
材料研究学报  2016, Vol. 30 Issue (10): 773-780    DOI: 10.11901/1005.3093.2016.102
  研究论文 本期目录 | 过刊浏览 |
不同沥青结合料水损害的纳米尺度研究*
刘克非1(),邓林飞1,郑佳宇1,蒋康2
1. 中南林业科技大学土木工程与力学学院 长沙 410004
2. 湖南省交通科学研究院 长沙 410015
Moisture Induced Damage of Various Asphalt Binders
Kefei LIU1,**(),Jiayu ZHENG1,Kang JIANG2
1. College of Civil Engineering and Mechanics, Central South University of Forestry & Technology, Changsha 410004, China
2. Hunan Communications Research Institute, Changsha 410015, China
引用本文:

刘克非,邓林飞,郑佳宇,蒋康. 不同沥青结合料水损害的纳米尺度研究*[J]. 材料研究学报, 2016, 30(10): 773-780.
Kefei LIU, Jiayu ZHENG, Kang JIANG, . Moisture Induced Damage of Various Asphalt Binders[J]. Chinese Journal of Materials Research, 2016, 30(10): 773-780.

全文: PDF(0 KB)   HTML
摘要: 

为了从微观尺度分析不同沥青结合料的抗水损害性能, 分别制备了不同状态下(干燥/潮湿、原样/老化)的70#A基质沥青、SBS改性沥青、Sasobit温拌沥青和橡胶改性沥青试样, 采用原子力显微镜(AFM)分析了各试样的表面特性, 测试了沥青与矿料间的粘附力值。结果表明: 干燥状态下, 基质沥青与矿料间的粘附力大于改性沥青, 但其测定结果的离散程度和波动性最大。潮湿状态下, 原样基质沥青、Sasobit温拌沥青和橡胶改性沥青的粘附力值均有不同程度的下降, 原样SBS改性沥青的对应值有较大的提高, 原样SBS改性沥青具有较好的抗水损能力。沥青老化过程极大地降低基质沥青的抗水分侵蚀能力, 基质沥青对水分更敏感, 更易产生水损害; 沥青老化也会降低SBS改性沥青的抗水损能力。

关键词 无机非金属材料沥青结合料原子力显微镜水损害微观    
Abstract

Four kinds of asphalt binders, 70#A base asphalt, SBS modified asphalt, Sasobit warm mix asphalt and rubber modified asphalt are prepared, then the water induced damage of them was studied by laboratory tests under different conditions (in dry or wet atmospheres, for as prepared or aged asphalts ). The surface morphology of the asphalts was characterized by means of atomic force microscope (AFM), while the adhesion force between the asphalt and the mineral aggregate was measured. The results show that, under the dry condition, the base asphalt show stronger adhesive ability with the mineral aggregate compared with the modified asphalts, but also have relatively large dispersion and fluctuation in the tested results. Under the wet condition, the adhesion forces of the as prepared base asphalt, Sasobit warm mix asphalt and rubber modified asphalt all decreased to some extent, among others the as prepared SBS modified asphalt exhibited higher adhesion force, showing stronger water damage resistance ability. The aging process significantly lowers the moisture erosion resistance ability of the base asphalt, making it more sensitive to moisture and more vulnerable to water damage. The aging also depresses the water damage resistance ability of SBS modified asphalt.

Key wordsinorganic non-metallic materials    asphalt binder    atomic force microscope    moisture damage    microcosmic
收稿日期: 2016-02-23     
基金资助:* 湖南省教育厅科学研究项目15B253和湖南省大学生研究性学习和创新性实验计划项目
Type of asphalt Penetration (25℃)/(0.1 mm) Penetration index (PI) Ductility (5℃)/cm Softening point /℃ Elastic recovery (25℃) /%
70#A base asphalt Original 76 -0.80 19 46.4 --
Aging 52 -0.68 9.8 52.4 --
SBS modified asphalt Original 58 0.33 26.4 59.7 94.0
Aging 46 0.41 10.8 68.1 88.2
Sasobit warm mix asphalt Original 56 0.37 14.8 63.5 89.1
Aging 48 0.43 11.0 73.0 82.6
Rubber modified asphalt Original 59 0.39 13.9 52.9 90.5
Aging 52 0.44 10.6 58.3 83.2
表1  各沥青结合料主要技术指标
图1  改性沥青制备工艺流程图
图2  各沥青结合料典型表面图像(干燥试样)
Type of asphalt Dry Wet
Average value /nm Maximum value /nm RMS
/nm
Average value /nm Maximum value /nm RMS
/nm
70#A base asphalt original 9.3 20.2 12.51 11.3 24.9 14.18
aging 11.7 24.3 14.77 14.6 26.3 16.22
SBS modified asphalt original 4.6 8.9 7.21 6.8 12.7 8.45
aging 7.1 13.8 9.95 8.3 15.9 9.11
Sasobit warm mix asphalt original 9.9 19.8 13.13 12.5 24.6 14.27
aging 14.8 23.1 15.01 13.6 29.8 15.80
Rubber modified asphalt original 13.3 43.4 18.17 16.7 41.2 19.95
aging 19.8 46.5 19.30 23.6 46.8 19.92
表2  各沥青结合料试样表面粗糙度计算结果
图3  各沥青结合料力-位移测试曲线图(干燥试样)
Point 70#A base
asphalt
SBS modified asphalt Sasobit warm mix asphalt Rubber modified asphalt
Dry Wet Dry Wet Dry Wet Dry Wet
1 103.7 71.3 57.8 126.4 49.6 38.5 45.6 34.9
2 88.9 52.5 61.5 111.3 52.7 42.7 47.7 39.6
3 111.2 47.9 60.3 121.6 58.8 46.8 41.5 40.3
4 101.5 50.7 66.4 125.2 59.1 44.3 41.3 41.7
5 86.5 58.5 63.7 119.5 54.3 39.6 39.2 35.9
6 88.2 47.8 63.5 117.4 55.6 37.2 44.5 33.7
7 107.4 46.7 59.6 126.3 56.1 45.8 40.1 42.1
8 85.3 63.4 58.7 109.9 52.5 47.5 42.8 38.5
9 91.2 67.9 64.0 115.8 58.4 40.9 48.1 34.5
10 114.1 57.3 67.5 101.6 56.9 48.7 46.2 34.8
Average /nN 97.8 56.4 62.3 117.5 55.4 43.2 43.7 37.6
Standard deviation/nN 9.963 8.346 3.087 7.672 2.959 3.824 3.008 3.033
Percent variation/% 10.19 14.80 4.95 6.53 5.34 8.85 6.88 8.07
表3  原样沥青结合料粘附力测试结果
Point 70#A base
asphalt
SBS modified asphalt Sasobit warm mix asphalt Rubber modified asphalt
Dry Wet Dry Wet Dry Wet Dry Wet
1 47.3 28.7 53.4 75.5 51.3 34.5 28.8 18.8
2 52.4 21.5 45.9 75.1 48.5 29.6 27.5 21.6
3 58.9 22.6 55.5 66.4 37.9 25.9 32.3 25.7
4 55.3 30.6 51.1 67.5 39.6 24.3 34.1 24.3
5 42.5 19.8 43.7 80.2 44.1 33.6 26.8 25.2
6 41.7 21.5 44.1 79.9 45.3 35.8 25.7 17.9
7 48.9 28.8 46.2 64.8 46.2 30.1 29.1 19.0
8 50.8 20.7 54.7 66.2 37.8 27.3 31.5 25.4
9 56.7 24.2 43.8 78.4 35.7 22.5 27.4 29.8
10 61.5 26.6 48.6 79.0 45.6 23.4 32.8 27.3
Average /nN 51.6 24.5 48.7 73.3 43.2 28.7 29.6 23.5
Standard deviation/nN 6.316 3.688 4.409 6.014 4.900 4.535 2.731 3.787
Percent variation/% 12.24 15.05 9.05 8.20 11.34 15.80 9.23 16.11
表4  老化沥青结合料粘附力测试结果
1 E. R. Beach, G. W. Tormoen, J. Drelich, Pull-off forces measured between hexadecanethiol self-assembled monolayers in air using an atomic force microscope: Analysis of surface free energy, Journal of Adhesion Science and Technology, 16(7), 845(2002)
2 D. Cheng, D. Little, R. L. Lytton, K. Newman, Use of surface free energy properties of the asphalt-aggregate system to predict moisture damage potential, Journal of the Association of Asphalt Paving Technologists, 71, 59(2002)
3 S. C. Huang, T. F. Tumer, A. T. Pauli, F. P. Miknis, J. F. Branthaver, R. E. Robertson, Evaluation of different techniques for adhesive properties of asphalt-?ller systems at interfacial region, Journal of ASTM International, 2(5), 1(2005)
4 M. C. Jo, A. R. Tarrer, Y. W. Jeon, S. J. Park, H. H. Yoon, Investigation of the effect of aggregate pretreatment with anti-stripping agents on the asphalt-aggregate bond, Petroleum Science and Technology, 15(3-4), 245(1997)
5 N. M. Wasiuddin, M. M. Zaman, E. A.O'Rear, Effect of sasobit and aspha-min on wettability and adhesion between asphalt binders and aggregates, Transportation Research Record: Journal of the Transportation Research Board, 2051, 8(2008)
6 M. H. Sadd, O. Dai, V. Parameswaran, A. Shukla, Simulation of asphalt materials using a ?nite element micromechanical model with damage mechanics, Transportation Research Record: Journal of the Transportation Research Board, 1832, 86(2003)
7 A. T. Rafiqul, M. Z. Arif, Nanoscale evaluation of moisture damage in polymer modified asphalts, Journal of Materials in Civil Engineering, 22, 714(2010)
8 A. T. Rafiqul, M. Z. Arif, Characterization of asphalt materials for moisture damage using atomic force microscopy and nanoindetation, Nanotechnology in Civil Infrastructure, 42, 237(2011)
9 I. Horcas, R. Fernandez, J. M. Gomez-Rodriguez, J. Colchero, J. Gomez-Herrero, A. M. Baro, WSXM: A software for scanning probe microscopy and a tool for nanotechnology, Review of Scientific Instruments, 78(1), 137(2007)
10 R. C. Thomas, J. E. Houston, R. M. Crooks, T. Kim, T. A. Michalske, Probing adhesion forces at the molecular scale, Journal of the American Chemical Society, 117, 3830(1995)
11 LIU Kefei, WU Chaofan, Study on compatibility evaluation method of Sasobit warm mix asphalt binder, Chinese Journal of Materials Research, 29(9), 707(2015)
11 (刘克非, 吴超凡, 费托蜡温拌沥青结合料相容性的评定方法, 材料研究学报, 29(9), 707(2015))
12 J. Long, L. Zhang, Z. Xu, J. Masliyan, Colloidal interaction between Langmuir-Blodgett bitumen ?lms and ?ne solid particles, Langmuir, 22, 8831(2006)
13 J. Drelich, Adhesion forces measured between particles and substrate with nanoroughness, Minerals and Metallurgical Processing, 23(4), 226(2006)
14 DOU Hui, Research on water stability of warm mix asphalt based on the theory of surface energy, Master's thesis(Lanzhou, Lanzhou Jiaotong University, 2012)
14 (窦晖, 基于表面能理论的温拌沥青混合料水稳定性研究, 硕士学位论文, 兰州交通大学(2012))
15 WANG Lilong, Based on the surface free energy of asphalt and mineral aggregate adhesion effect, Master's thesis (Chang'an University, 2013)
15 (汪立龙, 基于表面自由能的沥青与矿料粘附效应研究, 硕士学位论文, 长安大学(2013))
16 CHEN Huaxin, CHEN Shuanfa, WANG Binggang, The aging behavior and mechanism of base asphalts, Journal of Shandong University (Engineering Science), 39(2), 125(2009)
16 (陈华鑫, 陈拴发, 王秉纲, 基质沥青老化行为与老化机理, 山东大学学报(工学版), 39(2), 125(2009))
[1] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[2] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[3] 幸定琴, 涂坚, 罗森, 周志明. C含量对VCoNi中熵合金微观组织和性能的影响[J]. 材料研究学报, 2023, 37(9): 685-696.
[4] 熊诗琪, 刘恩泽, 谭政, 宁礼奎, 佟健, 郑志, 李海英. 固溶处理对一种低偏析高温合金组织的影响[J]. 材料研究学报, 2023, 37(8): 603-613.
[5] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[6] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.
[7] 秦鹤勇, 李振团, 赵光普, 张文云, 张晓敏. 固溶温度对GH4742合金力学性能及γ' 相的影响[J]. 材料研究学报, 2023, 37(7): 502-510.
[8] 史畅, 杜宇航, 赖利民, 肖思明, 郭宁, 郭胜锋. CrTaTi难熔中熵合金的力学性能和抗氧化性能[J]. 材料研究学报, 2023, 37(6): 443-452.
[9] 雷志国, 文胜平, 黄晖, 张二庆, 熊湘沅, 聂祚仁. 冷轧变形和添加SiAl-2Mg-0.8Cu(-Si)合金的组织和力学性能的影响[J]. 材料研究学报, 2023, 37(6): 463-471.
[10] 李延伟, 罗康, 姚金环. Ni(OH)2 负极材料的十二烷基硫酸钠辅助制备及其储锂性能[J]. 材料研究学报, 2023, 37(6): 453-462.
[11] 邵萌萌, 陈招科, 熊翔, 曾毅, 王铎, 王徐辉. C/C-ZrC-SiC复合材料的Si2+ 离子辐照行为[J]. 材料研究学报, 2023, 37(6): 472-480.
[12] 夏博, 王斌, 张鹏, 李小武, 张哲峰. 回火温度对高强弹簧钢微观组织和冲击性能的影响[J]. 材料研究学报, 2023, 37(5): 341-352.
[13] 余谟鑫, 张书海, 朱博文, 张晨, 王晓婷, 鲍佳敏, 邬翔. N掺杂生物炭的制备及其对Co2+ 的吸附性能[J]. 材料研究学报, 2023, 37(4): 291-300.
[14] 林师峰, 徐东安, 庄艳歆, 张海峰, 朱正旺. TiZr基非晶/TC21双层复合材料的制备和力学性能[J]. 材料研究学报, 2023, 37(3): 193-202.
[15] 董宇昂, 阳华杰, 贲丹丹, 马云瑞, 周相海, 王斌, 张鹏, 张哲峰. 液氮电脉冲处理超细晶316L不锈钢的低温拉伸性能[J]. 材料研究学报, 2023, 37(3): 168-174.