Please wait a minute...
材料研究学报  2016, Vol. 30 Issue (1): 51-56    DOI: 10.11901/1005.3093.2015.286
  研究论文 本期目录 | 过刊浏览 |
胶原组装形态对仿生矿化的影响*
丁珊1,2(), 唐敏健3, 陈俊杰1, 周长忍1,2, 李立华1,2, 李红1,2
1. 暨南大学材料科学与工程系 广州 510632
2. 人工器官与材料教育部工程研究中心 广州 510632
3. 国家知识产权局专利局专利审查协作广东中心 广州 510530
Effects of Collagen Assembly Form on Biomimetic Mineralization
DING Shan1,2,**(), TANG Minjian3, CHEN Junjie1, ZHOU Changren1,2, LI Lihua1,2, LI Hong1,2
1. Department of Material Science and Engineering, Jinan University, Guangzhou 510632, China
2. Engineering Research Center of Artificial Organs and Materials, Ministry of Education, Guangzhou 510632, China
3. Patent Examination Cooperation Center of the Patent Office, SIPO, Guangzhou 510530, China
引用本文:

丁珊, 唐敏健, 陈俊杰, 周长忍, 李立华, 李红. 胶原组装形态对仿生矿化的影响*[J]. 材料研究学报, 2016, 30(1): 51-56.
Shan DING, Minjian TANG, Junjie CHEN, Changren ZHOU, Lihua LI, Hong LI. Effects of Collagen Assembly Form on Biomimetic Mineralization[J]. Chinese Journal of Materials Research, 2016, 30(1): 51-56.

全文: PDF(4628 KB)   HTML
摘要: 

模拟天然骨组织中胶原的有序结构, 构建多级有序的胶原液晶膜, 以胶原非液晶膜作为参照, 通过体外的仿生矿化考察了胶原液晶模板对于仿生矿化的影响。采用偏光显微镜、扫描电镜、原子力显微镜、X-射线衍射等手段分析了仿生矿化不同时间后在两种模板上沉积的钙磷盐的形貌与结构。结果表明, 胶原液晶的多级有序结构对仿生矿化有比较明显的影响; 与胶原非液晶模板相比, 在胶原液晶模板上沉积的钙磷盐不仅在微观上有序, 而且在宏观上也很有序且致密。这表明, 胶原液晶的这种多级有序结构有利于构建仿生骨组织修复材料。

关键词 复合材料胶原液晶仿生矿化有序结构    
Abstract

To simulate the ordered texture of the collagen in natural bone tissue, membranes of collagen with hierarchically ordered texture were fabricated. The effect of templates made of collagen with and without ordered texture on the biomineralization process of calcium phosphate was comparatively studied in vitro. The morphology and structure of the deposited calcium phosphate on the collagen templates were characterized by using polarizing microscope (POM), scanning electron microscope (SEM), atomic force microscope (AFM) and X-ray diffraction (XRD). The results show that the collagen with hierarchically ordered texture has obvious effect on the biomimetic mineralization process; on which the deposited calcium phosphate is much more orderly and compact either in micro- or in macro scales. This result indicates that the collagen with hierarchically ordered texture is beneficial to the building of biomimetic bone tissues as materials for repair of human bone etc.

Key wordscomposite    collagen    liquid crystal    biomineralization    ordered texture
收稿日期: 2015-05-13     
基金资助:* 国家自然科学基金31400824和31270021资助项目
作者简介: 丁珊
图1  40 mg/mL胶原液晶膜仿生矿化不同时间后的偏光显微镜观察
图2  40 mg/mL的胶原液晶膜仿生矿化6 h经茜素红染色后的偏光显微镜观察
图3  胶原膜仿生矿化不同时间后的AFM观察
图4  两种胶原膜仿生矿化24 h后的SEM观察
图5  两种胶原膜仿生矿化不同时间后的XRD分析
图6  胶原膜仿生矿化不同时间后SBF溶液中的Ca、P含量
6 h-10 mg/mL 6 h-40 mg/mL 12 h-10 mg/mL 12 h-40 mg/mL 24 h-10 mg/mL 24 h-40 mg/mL
1.36±0.0407 1.00±0.0378 1.12±0.0271 1.00±0.0369 1.29±0.0366 1.48±0.282
表1  胶原膜仿生矿化不同时间后膜表面的Ca与P比
1 Cen L, Liu W, Cui L, Zhang W, Cao Y, Collagen tissue engineering: development of novel bomaterials and applications, Pediatr Res., 63, 492(2008)
2 Glowacki J, Mizuno S, Collagen scaffolds for tissue engineering, Biopolymers, 89, 338(2008)
3 TANG Minjian, DING Shan, ZHOU Changren, LI Lihua, Liquid crystal biomaterials, Chemical World, 12, 756(2010)
3 (唐敏健, 丁珊, 周长忍, 李立华, 液晶态生物材料, 化学世界, 12, 756(2010))
4 Giraud-Guille M-M, Besseau L, Herbage D, Gounon P, Optimization of collagen liquid crystalline assemblies: influence of sonic fragmentation, Journal of Structural Biology, 113, 99(1994)
5 Olszta M J, Douglas E P, Gower L B,Scanning electron microscopic analysis of the mineralization of type I collagen via a polymer-induced liquid-precursor (PILP) process, Calcif Tissue Int., 72, 583(2003)
6 Jee S-S, Thula T T, Gower L B, Development of bone-like composites via the polymer-induced liquid-precursor (PILP) process. Part 1: Influence of polymer molecular weight, Acta Biomaterialia, 6, 3676(2010)
7 Liao S, Murugan R, Chan C K, Ramakrishna S, Processing nanoengineered scaffolds through electrospinning and mineralization suitable for biomimetic bone tissue engineering, Journal of the Mechanical Behavior of Biomedical Materials, 1, 252(2008)
8 Liao S, Watari F, Uo M, Ohkawa S, Tamura K, Wang W, The preparation and characteristics of a carbonated hydroxyapatite/collagen composite at room temperature, Journal of Biomedical Materials Research Part B: Applied Biomaterials, 74B, 817(2005)
9 Zhang W, Liao S S, Cui F Z, Hierarchical self-assembly of nano-fibrils in mineralized collagen, Chemistry of Materials, 15, 3221(2003)
10 Al-Munajjed A A, Plunkett N A, Gleeson J P, Weber T, Jungreuthmayer C, Levingstone T, Development of a biomimetic collagen-hydroxyapatite scaffold for bone tissue engineering using a SBF immersion technique, Journal of Biomedical Materials Research Part B: Applied Biomaterials, 90B, 584(2009)
11 TANG Minjian, DING Shan, MIN Xiang, JIAO Yanpeng, ZHOU Changren, LI Hong, Effects of Collagen Liquid Crystalline Films on Cell Culture, Chemical Journal of Chinese Universities, 32(12), 2891(2011)
11 (唐敏健, 丁珊, 闵翔, 焦延鹏, 周长忍, 李红, 胶原液晶膜的制备及对细胞生长的影响, 高等学校化学学报, 32, 2891(2011))
12 ZENG Qinghui, TIAN Ye, WU Di, ZHAO Yaowu, LI Lihua, ZHOU Changren, Effects of collagen films with liquid crystal-liked ordered structure on adhesion, Proliferation and Differentiation of Human Umbilical Cord Mesenchymal Stem Cells, Chemical Journal of Chinese Universities, 35, 1658(2014)
13 Kim H-M, Himeno T, Kawashita M, Kokubo T, Nakamura T, The mechanism of biomineralization of bone-like apatite on synthetic hydroxyapatite: an in vitro assessment, Journal of The Royal Society Interface, 1, 17(2004)
14 Jian B, Narula N, Li Q-y, Mohler Iii E R, Levy R J, Progression of aortic valve stenosis: TGF-β1 is present in calcified aortic valve cusps and promotes aortic valve interstitial cell calcification via apoptosis, The Annals of Thoracic Surgery, 75, 457(2003)
15 Fullana M, Wnek G, Electrospun collagen and its applications in regenerative medicine, Drug Deliv. and Transl. Res., 2, (2012)
16 Nudelman F, Pieterse K, George A, Bomans P H H, Friedrich H, Brylka L J, The role of collagen in bone apatite formation in the presence of hydroxyapatite nucleation inhibitors, Nat Mater., 9, 1004(2010)
17 Gonzalez M, Hernandez E, Ascencio J A, Pacheco F, Pacheco S, Rodriguez R, Hydroxyapatite crystals grown on a cellulose matrix using titanium alkoxide as a coupling agent, Journal of Materials Chemistry, 13, 2948(2003)
18 Tadic D, Epple M, A thorough physicochemical characterisation of 14 calcium phosphate-based bone substitution materials in comparison to natural bone, Biomaterials, 25, 987(2004)
[1] 潘新元, 蒋津, 任云飞, 刘莉, 李景辉, 张明亚. 热挤压钛/钢复合管的微观组织和性能[J]. 材料研究学报, 2023, 37(9): 713-720.
[2] 刘瑞峰, 仙运昌, 赵瑞, 周印梅, 王文先. 钛合金/不锈钢复合板的放电等离子烧结技术制备及其性能[J]. 材料研究学报, 2023, 37(8): 581-589.
[3] 季雨辰, 刘树和, 张天宇, 查成. MXene在锂硫电池中应用的研究进展[J]. 材料研究学报, 2023, 37(7): 481-494.
[4] 王伟, 解泽磊, 屈怡珅, 常文娟, 彭怡晴, 金杰, 王快社. Graphene/SiO2 纳米复合材料作为水基润滑添加剂的摩擦学性能[J]. 材料研究学报, 2023, 37(7): 543-553.
[5] 张藤心, 王函, 郝亚斌, 张建岗, 孙新阳, 曾尤. 基于界面氢键结构的石墨烯/聚合物复合材料的阻尼性能[J]. 材料研究学报, 2023, 37(6): 401-407.
[6] 邵萌萌, 陈招科, 熊翔, 曾毅, 王铎, 王徐辉. C/C-ZrC-SiC复合材料的Si2+ 离子辐照行为[J]. 材料研究学报, 2023, 37(6): 472-480.
[7] 张锦中, 刘晓云, 杨健茂, 周剑锋, 查刘生. 温度响应性双面纳米纤维的制备和性能[J]. 材料研究学报, 2023, 37(4): 248-256.
[8] 王刚, 杜雷雷, 缪自强, 钱凯成, 杜向博文, 邓泽婷, 李仁宏. 聚多巴胺改性碳纤维增强尼龙6复合材料的界面性能[J]. 材料研究学报, 2023, 37(3): 203-210.
[9] 林师峰, 徐东安, 庄艳歆, 张海峰, 朱正旺. TiZr基非晶/TC21双层复合材料的制备和力学性能[J]. 材料研究学报, 2023, 37(3): 193-202.
[10] 苗琪, 左孝青, 周芸, 王应武, 郭路, 王坦, 黄蓓. 304不锈钢纤维/ZL104铝合金复合泡沫的孔结构、力学、吸声性能及其机理[J]. 材料研究学报, 2023, 37(3): 175-183.
[11] 张开银, 王秋玲, 向军. FeCo/SnO2 复合纳米纤维的制备及其吸波性能[J]. 材料研究学报, 2023, 37(2): 102-110.
[12] 周聪, 昝宇宁, 王东, 王全兆, 肖伯律, 马宗义. (Al11La3+Al2O3)/Al复合材料的高温性能及其强化机制[J]. 材料研究学报, 2023, 37(2): 81-88.
[13] 罗昱, 陈秋云, 薛丽红, 张五星, 严有为. 钠离子电池双层碳包覆Na3V2(PO4)3 正极材料的超声辅助溶液燃烧合成及其电化学性能[J]. 材料研究学报, 2023, 37(2): 129-135.
[14] 谢东航, 潘冉, 朱士泽, 王东, 刘振宇, 昝宇宁, 肖伯律, 马宗义. 增强颗粒尺寸对B4C/Al-Zn-Mg-Cu复合材料微观组织及力学性能的影响[J]. 材料研究学报, 2023, 37(10): 731-738.
[15] 刘志华, 岳远超, 丘一帆, 卜湘, 阳涛. g-C3N4/Ag/BiOBr复合材料的制备及其光催化还原硝酸盐氮[J]. 材料研究学报, 2023, 37(10): 781-790.