Please wait a minute...
材料研究学报  2016, Vol. 30 Issue (1): 23-30    DOI: 10.11901/1005.3093.2015.284
  研究论文 本期目录 | 过刊浏览 |
Ti55粉末合金的拉伸性能和薄壁筒体结构的成型
徐磊1(), 郭瑞鹏1,2, 陈志勇1, 贾清1, 王清江1
1. 中国科学院金属研究所 沈阳 110016
2. 东北大学材料与冶金学院 沈阳 110819
Mechanical Property of Powder Compact and Forming of Large Thin-Wall Cylindrical Structure of Ti55 Alloys
XU Lei1,*(), GUO Ruipeng1,2, CHEN Zhiyong1, JIA Qing1, WANG Qingjiang1
1. Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
2. School of Materials and Metallurgy, Northeastern University, Shenyang 110819, China
引用本文:

徐磊, 郭瑞鹏, 陈志勇, 贾清, 王清江. Ti55粉末合金的拉伸性能和薄壁筒体结构的成型[J]. 材料研究学报, 2016, 30(1): 23-30.
Lei XU, Ruipeng GUO, Zhiyong CHEN, Qing JIA, Qingjiang WANG. Mechanical Property of Powder Compact and Forming of Large Thin-Wall Cylindrical Structure of Ti55 Alloys[J]. Chinese Journal of Materials Research, 2016, 30(1): 23-30.

全文: PDF(4242 KB)   HTML
摘要: 

采用包套热等静压工艺制备了洁净Ti55粉末合金。根据Ti55预合金粉末的β转变温度选择了两个热等静压成型温度, 分析了Ti55粉末合金对热等静压温度和后续的热处理制度的响应。结果表明: 在940℃和970℃热等静压成型的粉末合金, 其显微组织和拉伸性能的差别不大。考虑到在构件热等静压成型过程中存在温度/压力场分布不均匀引起的致密化波动效应, 本文优选的热等静压温度为940℃。固溶时效热处理使粉末合金600℃的拉伸性能显著提高, 其拉伸性能优于铸造合金, 接近锻造合金的水平。有限元模拟仿真可辅助包套/模具设计, 提高效率, 是粉末冶金近净成型构件制备的有效计算仿真工具。应用有限元仿真辅助包套模具设计, 采用热等静压工艺成型了Ti55粉末冶金薄壁筒体结构。

关键词 金属材料粉末冶金热等静压Ti55合金薄壁筒体结构有限元仿真    
Abstract

Pre-alloyed powders of T55 have been hot-isostatic-pressed (HIPed) at different HIPing temperatures, and the powder compacts were solution- and aging- treated. Thereafter the powder compacts were carefully examined to establish the relationship between their microstructure and mechanical property. Powder compacts HIPed at 940℃ and 970℃ showed no significant difference on the microstructure and tensile properties. Due to the densification wave effect caused by a non-uniformity of temperature/pressure field during HIPing, the recommended HIPing temperature is 940℃ in this work. The tensile property of powder compact at 600℃ was improved obviously after solution- and aging- treatment. The tensile property of the heat-treated powder compact is close to that of the wrought alloy but better than those of the cast ones. Finite element analysis was used to predict the final dimensions of the small casing component after HIPing, which is well consonant with the experimental data, thus, the FEM analysis is an efficient method for the design and manufacture of powder components. Based on the optimal container design and FEM analysis, a large thin-wall cylindrical structure of Ti55 alloys was manufactured successfully.

Key wordsmetallic materials    powder metallurgy    hot isostatic pressing    Ti55 alloy    large thin-wall cylindrical structure    finite element analysis
收稿日期: 2015-05-12     
作者简介: 徐磊
Al Sn Zr Mo Nb Ta Si O N H Ti
5.41 3.46 2.91 0.68 0.36 0.42 0.28 0.09 0.0036 0.003 Bal.
表1  Ti55预合金粉末的化学成分和气体含量
图1  Ti55预合金粉末的XRD图谱和粒度分布
图2  Ti55预合金粉末颗粒表面形貌的扫描电镜照片
图3  不同热等静压温度下Ti55粉末合金的显微组织
HIPing
temperature
20oC 550oC
UTS/MPa YS/MPa El./ % R.A./% UTS/MPa YS/MPa El./% R.A./%
940 oC 974 921 16.0 28.4 624 499 14.4 22.9
970 oC 1002 941 11.5 18.6 641 515 13.2 19.1
表2  不同热等静压温度下Ti55粉末合金的拉伸性能
图4  包套热等静压成型前后的对比
图5  固溶时效热处理后Ti55粉末合金的显微组织
State t / oC UTS / MPa YS / MPa El. / % R.A. / %
As-HIPed 20 974 921 16.0 28.4
600 586 465 15.8 22.9
960oC/1.5 h/AC+600oC/4 h/AC 20 994 902 14.8 39.0
600 655 510 20.8 34.5
990oC/1.5 h/AC+600oC/4 h/AC 20 1005 902 14.3 30.3
600 650 509 22.5 37.2
表3  不同热处理途径下Ti55粉末合金的拉伸性能
图6  典型锻造和铸造Ti55合金的显微组织
图7  铸造、粉末和锻造Ti55合金热处理后的拉伸性能
图8  包套设计图和粉末构件示意图
图9  钛合金粉末薄壁筒体结构压坯示意图
Position FEM size
/mm
Actual size
/mm
Deviation
/mm
Relative error
/%
I 9.34 9.55 0.21 2.2
II 3.86 3.92 0.06 <1
III 3.67 4.09 0.42 1.05
IV 14.53 14.17 0.36 2.64
V 3.62 4.16 0.54 1.35
VI 4.13 4.05 0.08 <1
表4  钛合金粉末薄壁回转体零件的主要尺寸和误差
图10  Ti55粉末薄壁筒体
1 D. Banerjee, J. C. Williams, Perspectives on titanium science and technology, Acta Materialia, 61, 844(2013)
2 Z. C. Sun, X. Q. Wang, J. Zhang, H. Yang, Prediction and control of equiaxed α in near-β forging of TA15 Ti-alloy based on BP neural network: For purpose of tri-modal microstructure, Materials Science and Engineering A, 591, 18(2014)
3 WANG Qingjiang, LIU Jianrong, YANG Rui, High temperature titanium alloys: status and perspective, Journal of Aeronautical Materials, 34(4), 1(2014)
3 (王清江, 刘建荣, 杨锐, 高温钛合金的现状与前景, 航空材料学报, 34(4), 1(2014))
4 Yang R, Fundamental and application-oriented research on gamma alloys, In: Kim Y W, Smarsly W, Lin J P, Dimiduk D eds., Gamma Titanium Aluminide, Warrendale, PA: TMS, 143(2014)
5 WU Jie, XU Lei, LU Bin, CUI Yuyou, YANG Rui, Preparation of Ti2AlNb alloy by powder metallurgy and its rupture life, Chinese Journal of Materials Research, 28(5), 391(2014)
5 (吴杰, 徐磊, 卢斌, 崔玉友, 杨锐, 粉末冶金Ti2AlNb合金的制备及持久寿命, 材料研究学报, 28(5), 391(2014))
6 L. Xu, R. P. Guo, C. G. Bai, J. F. Lei, R. Yang, Effect of hot isostatic pressing conditions and cooling rate on microstructure and properties of Ti-6Al-4V alloy from atomized powder, Journal of Materials Science & Technology, 30(12), 1289(2014)
7 K. Zhang, J. Mei, N. Wain, X. Wu, Effect of hot-isostatic-pressing parameters on the microstructure and properties of powder Ti-6Al-4V hot-isostatically-pressed samples, Metallurgical and Materials Transactions A, 41, 1033(2010)
8 WU Jie, XU Lei, GUO Ruipeng, LU Zhengguan, CUI Yuyou, YANG Rui, Preparation of Ti2AlNb alloy by powder metallurgy and its rupture life, Chinese Journal of Materials Research, 29(2), 127(2015)
8 (吴杰, 徐磊, 郭瑞鹏, 卢正冠, 崔玉友, 杨锐, 粉末冶金Ti-47Al-2Cr-2Nb-0.15B合金的制备及力学性能影响因素, 材料研究学报, 29(2), 127(2015))
9 G. Wegmann, R. Gerling, F. Schimansky, Temperature induced porosity in hot isostatically pressed gamma titanium aluminide alloy powders, Acta Materialia, 51, 741(2003)
10 D. R. Bear, M. D. Merz, Differences in oxides on large and small-greined 304 stainless steel, Metallurgical and Materials Transactions A, 11(12), 1973(1980)
11 CHENG Wenxiang, Investigation on densification behavior and finite element modeling of Ti-5Al-2.5Sn ELI pre-alloyed powders, Master thesis, Institute of Metal Research, Chinese Academy of Sciences (2013)
11 (程文祥, Ti-5Al-2.5Sn ELI预合金粉末热等静压致密化行为与有限元模拟研究, 硕士学位论文, 中国科学院金属研究所(2013))
12 GUO Ruipeng, Mechanical properties of powder metallurgy titanium alloys and densification of titanium powders during HIPing, Master thesis, Northeastern University (2014)
12 (郭瑞鹏, 粉末冶金钛合金力学性能与热等静压致密化研究, 硕士学位论文, 东北大学(2013))
13 A. S. Helle, K. E. Easterling, M. F. Ashby, Hot isostatic pressing diagrams: new development, Acta Metallurgica, 33(12), 2163(1985)
14 R. P. Guo, L. Xu, J. Wu, R. Yang, Y. P. Zong, Microstructure evolution and mechanical properties of powder metallurgy Ti-6Al-4V alloy based on heat response, Materials Science and Engineering A, 639, 327(2015)
15 E. Olevsky, L. Buekenhout, Container influence on shrinkage under hot isostatic pressing-I. shrinkage anisotropy of a cylindrical specimen, International Journal of Solids Structures, 35(18), 2283(1998)
16 G. Lütjering, J.C. Williams, Titanium, Springer, Berlin, 2007
17 LIU Guocheng, SHI Yusheng, WEI Qingsong, XUE Pengju, Numerical simulation of the densification of 316L powder during hot isostatic pressing, Journal OF Huazhong University of Science &Technology (Natural Science Edition), 39(10), 23(2011)
17 (刘国承, 史玉升, 魏青松, 薛鹏举, 316L粉末热等静压致密化过程数值模拟, 华中科学大学学报(自然科学版), 39(10), 23(2011))
18 LANG Lihui, BU Guoliang, XUE Yong, ZHANG Dongxing, Determine key parameters of simulation constitutive and process optimization for titanium alloy (Ti-6Al-4V) hot isostatic pressing, Journal of Plasticity Engineering, 18(4), 34(2011)
18 (郎利辉, 布国亮, 薛勇, 张东星, 钛合金热等静压模拟本构关键参数确定及工艺优化, 塑性工程学报, 18(4), 34(2011))
19 W. X. Yuan, J. Mei, V. Samarov, D. Seliverstov, X. Wu, Computer modelling and tooling design for near net shaped components using hot isostatic pressing, Journal of Materials Processing Technology, 182, 39(2007)
20 GUO Ruipeng, XU Lei, BAI Chunguang, WU Jie, WANG Qingji-ang, YANG Rui, Effect of can design on tensile properties of typi-cal powder metallurgy titanium alloys, The Chinese Journal of Non-ferrous Metals, 24(8), 2051(2014)
20 (郭瑞鹏, 徐磊, 柏春光, 吴杰, 王清江, 杨锐, 包套设计对典型钛合金粉末合金拉伸性能的影响, 中国有色金属学报, 24(8), 2051(2014))
21 R. P. Guo, L. Xu, J. Wu, Z. G. Lu, R. Yang, Simulation of container design for powder metallurgy titanium components through hot-isostatic-pressing, Materials Science Forum, 817, 610(2015)
[1] 毛建军, 富童, 潘虎成, 滕常青, 张伟, 谢东升, 吴璐. AlNbMoZrB系难熔高熵合金的Kr离子辐照损伤行为[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] 赵政翔, 廖露海, 徐芳泓, 张威, 李静媛. 超级奥氏体不锈钢24Cr-22Ni-7Mo-0.4N的热变形行为及其组织演变[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] 幸定琴, 涂坚, 罗森, 周志明. C含量对VCoNi中熵合金微观组织和性能的影响[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] 欧阳康昕, 周达, 杨宇帆, 张磊. LPSOMg-Y-Er-Ni合金的组织和拉伸性能[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] 徐利君, 郑策, 冯小辉, 黄秋燕, 李应举, 杨院生. 定向再结晶对热轧态Cu71Al18Mn11合金的组织和超弹性性能的影响[J]. 材料研究学报, 2023, 37(8): 571-580.
[8] 熊诗琪, 刘恩泽, 谭政, 宁礼奎, 佟健, 郑志, 李海英. 固溶处理对一种低偏析高温合金组织的影响[J]. 材料研究学报, 2023, 37(8): 603-613.
[9] 刘继浩, 迟宏宵, 武会宾, 马党参, 周健, 徐辉霞. 喷射成形M3高速钢热处理过程中组织的演变和硬度偏低问题[J]. 材料研究学报, 2023, 37(8): 625-632.
[10] 由宝栋, 朱明伟, 杨鹏举, 何杰. 合金相分离制备多孔金属材料的研究进展[J]. 材料研究学报, 2023, 37(8): 561-570.
[11] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[12] 王昊, 崔君军, 赵明久. 镍基高温合金GH3536带箔材的再结晶与晶粒长大行为[J]. 材料研究学报, 2023, 37(7): 535-542.
[13] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.
[14] 秦鹤勇, 李振团, 赵光普, 张文云, 张晓敏. 固溶温度对GH4742合金力学性能及γ' 相的影响[J]. 材料研究学报, 2023, 37(7): 502-510.
[15] 刘天福, 张滨, 张均锋, 徐强, 宋竹满, 张广平. 缺口应力集中系数对TC4 ELI合金低周疲劳性能的影响[J]. 材料研究学报, 2023, 37(7): 511-522.