Please wait a minute...
材料研究学报  2015, Vol. 29 Issue (9): 649-655    DOI: 10.11901/1005.3093.2014.553
  本期目录 | 过刊浏览 |
热处理对高Nb-TiAl合金板材组织及力学性能的影响
沈正章,梁永锋,王艳丽,郝国建,张来启,林均品()
北京科技大学 新金属材料国家重点实验室 北京 100083
Effect of Heat Treatment on Microstructure and Mechanical Properties of High Nb-TiAl Alloy Sheet
Zhengzhang SHEN,Yongfeng LIANG,Yanli WANG,Guojian HAO,Laiqi ZHANG,Junpin LIN()
State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing 100083, China
引用本文:

沈正章,梁永锋,王艳丽,郝国建,张来启,林均品. 热处理对高Nb-TiAl合金板材组织及力学性能的影响[J]. 材料研究学报, 2015, 29(9): 649-655.
Zhengzhang SHEN, Yongfeng LIANG, Yanli WANG, Guojian HAO, Laiqi ZHANG, Junpin LIN. Effect of Heat Treatment on Microstructure and Mechanical Properties of High Nb-TiAl Alloy Sheet[J]. Chinese Journal of Materials Research, 2015, 29(9): 649-655.

全文: PDF(10866 KB)   HTML
摘要: 

研究了不同热处理工艺对高Nb-TiAl合金板材的显微组织及力学性能的影响。采用铸锭原料直接包套热轧制备的板材主要由残余粗化的片层团、再结晶γ晶粒和沿轧制方向带状分布的β相组成。通过不同的热处理工艺可以消除残余片层和β相, 分别获得典型的双态组织、近片层组织和全片层组织。对热处理后具有双态组织的板材进行了室温和高温力学性能测试, 结果表明: 经热处理后, 热轧板材的室温延伸率达到0.5%, 屈服强度和抗拉强度分别提高到646 MPa和691 MPa, 与铸态相比, 其室温强度和塑性得到了改善, 在850-900℃之间材料发生韧脆转变, 并且相应断裂机理从脆性的穿晶断裂转变为孔洞的形核和聚集。

关键词 金属材料高Nb-TiAl合金包套热轧热处理双态组织力学性能    
Abstract

Effect of heat treatment on the microstructure and mechanical properties of a high Nb-containing TiAl alloy sheet was investigated, which was fabricated by directly hot-rolling a packed alloy ingot. The obtained sheet mainly consisted of remnant coarsening lamella, recrystallized γ grains and strip-like β phase along rolling direction. Followed by variant heat treatments, the coarse lamella and β phase were eliminated, and various typical microstructures were appeared, such as duplex, near fully lamellar and fully lamellar ones. Mechanical properties of the sheet with duplex microstructure were tested at room and high temperatures respectively. The results showed that the strength and ductility of the sheet at room temperature were improved after heat treatment. The brittle-ductile transition temperature was in the range of 850-900℃, and the corresponding fracture mode transformed from transgranular fracture to the nucleation and coalescence of voids.

Key wordsmetallic materials    high Nb-TiAl alloy    hot-pack rolling    heat treatment    duplex microstructure    mechanical property
收稿日期: 2014-09-30     
基金资助:* 国家重点基础研究发展计划2011CB605501资助项目。
No. Heat treatment Microstructure
HT1 HT1-1 1250℃/8 h+900℃/1 h+FC DP
HT1-2 1250℃/16 h+900℃/1 h+FC
HT1-3 1250℃/24 h+900℃ 1 h+FC
HT2 1300℃/1 h+1250℃/4 h+900℃/1 h+FC DP
HT3 1320℃/30 min+900℃/1 h+FC NFL
HT4 1335℃/30 min+900℃/1 h+FC FL
表1  高Nb-TiAl合金热轧板材的热处理工艺
图1  高Nb-TiAl基合金的铸态组织
Element Lamellar β γ
Ti 43.12 50.13 40.61
Al 47.93 36.66 49.32
Nb 8.89 12.77 9.99
W 0.06 0.44 0.09
表2  铸态高Nb-TiAl合金EDS成分分析
图2  铸态高Nb-TiAl合金XRD谱
图3  经4道次热轧后板材的显微组织
图4  高Nb-TiAl热轧板材经过HT1热处理后的BSE像
图5  高Nb-TiAl热轧板材经HT2热处理后的BSE像
图6  高Nb-TiAl合金板材分别经过HT3和HT4热处理后的BSE像
图7  铸态和具有双态组织板材的室温拉伸应力—应变曲线
图8  具有双态组织板材的高温拉伸性能
图9  室温拉伸断口形貌
图10  具有双态组织的轧板在不同温度下拉伸断口形貌
1 C. T. Liu,Recent advance in ordered intermetallics, Materials Chemistry and Physics, 42(2), 77(1995)
2 Y. W. Kim,Intermetallic alloys based on gamma titanium aluminide, JOM, 41(7), 24(1989)
3 LIU Zicheng,Research on the micro-alloying and the creep properties of high niobium containing TiAl alloys, Doctoral thesis, University of Scienceand Technology Beijing(2000)
3 (刘自成, 高铌TiAl合金成分及组织优化的研究, 博士学位论文, 北京科技大学(2000))
4 ZHANG Junhong,HUANG Boyun, ZHOU Kechao, Pack rolling of TiAl based alloy, The Chinese Journal of Nonferrous Metals, 11, 1055(2001)
4 (张俊红, 黄伯云, 周科朝, 包套轧制制备TiAl 基合金板材, 中国有色金属学报, 11, 1055(2001))
5 MIAO Jiashi,LIN Junpin, WANG Yanli, LIN Zhi, CHEN Guoliang, High temperature pack rolling of a high-Nb TiAl alloy sheet, Rare Metal Materials and Engineering, 33(4), 436(2004)
5 (缪家士, 林均品, 王艳丽, 林 志, 陈国良, 高铌钛铝基合金板材的高温包套轧制, 稀有金属材料与工程, 33(4), 436(2004))
6 V. Seetharaman, S. L. Semiatin,Microstructures and tensile properties of Ti-45.5Al-2Nb-2Cr rolled sheets, Materials Science and EngineeringA, 299, 195(2001)
7 R. Gerling, F. P. Schimansky, A. Stark,Microstructure and mechanical properties of Ti45Al5Nb+(0-0.5C) sheets, Intermetallics, 16, 689(2008)
8 JIANG Yao,HE Yue hui, TANG Yiwu , LI Zhi , HUANG Baiyun, Fabrication of Ti Al alloy sheets by element powder cold roll forming and reactive synthesis, The Chinese Journal of Nonferrous Metals, 14, 1501(2004)
8 (江 垚, 贺跃辉, 汤义武, 李 智, 黄伯云, 元素粉末冷轧成形及反应合成制备TiAl合金板材, 中国有色金属学报, 14, 1501(2004))
9 GAO Jianfeng,XU Xiangjun, LIN Junping, SONG Xiping, WANG Yanli, LIN Zhi, CHEN Guoliang, LI Shusuo, SU Xikong, HAN Yafang, Effect of hot-forging on the room temperature ductility of high Nb containing TiA1 alloy, Rare Metal Materials and Engineering, 34(9), 1497(2005)
9 (高建峰, 徐向俊, 林均品, 宋西平, 王艳丽, 林 志, 陈国良, 李树索, 苏喜孔, 韩雅芳, 热变形高铌TiAl合金室温塑性研究, 稀有金属材料与工程, 34(9), 1497(2005))
10 G. L. Chen, L.C. Zhang, W. J. Zhang,Microstructural stability of lamellar TiAl-based alloys at high temperature, Intermetallics, 7, 1211(1999)
11 S. L. Semiatin, B. W. Shanahan, F. Meisenkothen,Hot rolling of gamma titanium aluminide Foil, Acta Materialia, 58, 4446(2010)
12 A. Bartels, H. Kestler, H. Clemens,Deformation behavior of differently processed γ-titanium aluminides, Materials Science and Engineering A, 329, 153(2002)
13 L. Cheng, H. Chang, B. Tang, H. C. Kou, J. S Li,Deformation and dynamic recrystallization behavior of a high Nb containing TiAl alloy, Journal of Alloys and Compounds, 552, 363(2013)
14 H.Z. Niu, Y.Y. Chen, S.L. Xiao, L.J. Xu,Microstructure evolution and mechanical properties of a novel beta γ-TiAl alloy, Intermetallics, 31, 225(2012)
15 G. E. Fuchs,Supertransus processing of TiAl-based alloys, Metall. Mater. Trans. A, 29, 27(1998)
[1] 毛建军, 富童, 潘虎成, 滕常青, 张伟, 谢东升, 吴璐. AlNbMoZrB系难熔高熵合金的Kr离子辐照损伤行为[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] 赵政翔, 廖露海, 徐芳泓, 张威, 李静媛. 超级奥氏体不锈钢24Cr-22Ni-7Mo-0.4N的热变形行为及其组织演变[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] 幸定琴, 涂坚, 罗森, 周志明. C含量对VCoNi中熵合金微观组织和性能的影响[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] 欧阳康昕, 周达, 杨宇帆, 张磊. LPSOMg-Y-Er-Ni合金的组织和拉伸性能[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] 潘新元, 蒋津, 任云飞, 刘莉, 李景辉, 张明亚. 热挤压钛/钢复合管的微观组织和性能[J]. 材料研究学报, 2023, 37(9): 713-720.
[8] 徐利君, 郑策, 冯小辉, 黄秋燕, 李应举, 杨院生. 定向再结晶对热轧态Cu71Al18Mn11合金的组织和超弹性性能的影响[J]. 材料研究学报, 2023, 37(8): 571-580.
[9] 熊诗琪, 刘恩泽, 谭政, 宁礼奎, 佟健, 郑志, 李海英. 固溶处理对一种低偏析高温合金组织的影响[J]. 材料研究学报, 2023, 37(8): 603-613.
[10] 刘继浩, 迟宏宵, 武会宾, 马党参, 周健, 徐辉霞. 喷射成形M3高速钢热处理过程中组织的演变和硬度偏低问题[J]. 材料研究学报, 2023, 37(8): 625-632.
[11] 陈晶晶, 占慧敏, 吴昊, 朱乔粼, 周丹, 李柯. 纳米晶CoNiCrFeMn高熵合金的拉伸力学性能[J]. 材料研究学报, 2023, 37(8): 614-624.
[12] 由宝栋, 朱明伟, 杨鹏举, 何杰. 合金相分离制备多孔金属材料的研究进展[J]. 材料研究学报, 2023, 37(8): 561-570.
[13] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[14] 王昊, 崔君军, 赵明久. 镍基高温合金GH3536带箔材的再结晶与晶粒长大行为[J]. 材料研究学报, 2023, 37(7): 535-542.
[15] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.