Please wait a minute...
材料研究学报  2015, Vol. 29 Issue (8): 622-626    DOI: 10.11901/1005.3093.2014.707
  本期目录 | 过刊浏览 |
聚苯胺-钴铬锌铁氧体复合材料的微波吸收性能和磁性能
马瑞廷(),蒋丹,王晓,赵海涛
沈阳理工大学材料科学与工程学院 沈阳 110159
Microwave Absorbing and Magnetic Properties of the Polyaniline-Co0.7Cr0.1Zn0.2Fe2O4 Composites
Ruiting MAJIANGDan**(),Xiao WANG,Haitao ZHAO
School of Materials Science and Engineering, Shenyang Ligong University, Shenyang 110159, China
引用本文:

马瑞廷,蒋丹,王晓,赵海涛. 聚苯胺-钴铬锌铁氧体复合材料的微波吸收性能和磁性能[J]. 材料研究学报, 2015, 29(8): 622-626.
Ruiting MA, Xiao WANG, Haitao ZHAO, . Microwave Absorbing and Magnetic Properties of the Polyaniline-Co0.7Cr0.1Zn0.2Fe2O4 Composites[J]. Chinese Journal of Materials Research, 2015, 29(8): 622-626.

全文: PDF(796 KB)   HTML
摘要: 

用聚丙烯酰胺凝胶法和原位聚合法分别制备了钴铬锌铁氧体(Co0.7Cr0.1Zn0.2Fe2O4)和聚苯胺-钴铬锌铁氧体复合材料(PANI-Co0.7Cr0.1Zn0.2Fe2O4), 用XRD和FT-IR对材料的结构进行了表征。结果表明, 制备的Co0.7Cr0.1Zn0.2Fe2O4铁氧体为尖晶石结构, 少量Cr3+离子替代了铁氧体八面体位置上的Co2+离子, 导致铁氧体的晶格常数从0.8409 nm减小到0.8377 nm。用振动样品磁强计(VSM)测量了材料的磁性能, 结果表明, PANI-Co0.7Cr0.1Zn0.2Fe2O4复合材料的饱和磁化强度(Ms)、剩余磁化强度(Mr)和矫顽力(Hc)分别为8.80 emu/g、14 emu/g和37.22 kA/m, 小于铁氧体的相应数值; 用波导法研究了PANI-Co0.7Cr0.1Zn0.2Fe2O4复合材料的微波吸收性能, 在5-20 GHz频率范围内14.1 GHz和17.9 GHz处出现两个极大反射损耗, 分别为-13.17 dB和-15.36 dB, 大于铁氧体的反射损耗。

关键词 复合材料铁氧体聚苯胺微波吸收性能磁性能    
Abstract

The spinel cobalt chromium zinc ferrites (Co0.7Cr0.1Zn0.2Fe2O4) and composites of polyaniline(PANI)-Co0.7Cr0.1Zn0.2Fe2O4 were prepared by polyacrylamide gel and in situ polymerization method, respectively, and then the synthesized materials were characterized by X-ray diffraction (XRD) and Fourier transform infrared spectrometer (FT-IR), their magnetic properties were measured using vibrating sample magnetometer (VSM) and their microwave absorbing capability was investigated by wave-guide method. The results show that the spinel Co0.7Cr0.1Zn0.2Fe2O4 ferrites and the composites PANI-Co0.7Cr0.1Zn0.2Fe2O4 are acquired. Because a small amount Co2+ ion of the octahedron ferrite is replaced by Cr3+ ions, the lattice constant of the Co0.8Zn0.2Fe2O4 ferrite reduces from 0.8409 nm to 0.8377 nm. The saturation magnetization (Ms), remanent magnetization (Mr) and coercive force (Hc) of the PPy-Co0.7Cr0.1Zn0.2Fe2O4 composites are 8.80 emug-1, 3.14 emug-1 and 37.22 kAm-1, respectively, which are smaller than that of the Co0.7Cr0.1Zn0.2Fe2O4 ferrite. In a measuring frequency range of 5.0-20.0 GHz, two peak values of reflection loss for the composites PPy-Co0.7Cr0.1Zn0.2Fe2O4 appear at 14.1 GHz and 17.9 GHz with -13.17 dB and -15.36 dB, respectively, which is obviously higher than those of the Co0.7Cr0.1Zn0.2Fe2O4 ferrite.

Key wordscomposites    ferrite    polyaniline    microwave absorbing properties    magnetic properties
收稿日期: 2014-11-27     
基金资助:* 辽宁省自然科学基金2014020094和沈阳市重点实验室建设基金F14-187-1-00资助项目。
图1  PANI-Co0.7Cr0.1Zn0.2Fe2O4, Co0.7Cr0.1Zn0.2Fe2O4和Co0.8Zn0.2Fe2O4的XRD谱
图2  PANI-Co0.7Cr0.1Zn0.2Fe2O4和Co0.7Cr0.1Zn0.2Fe2O4的红外光谱图
图3  PANI-Co0.7Cr0.1Zn0.2Fe2O4和Co0.7Cr0.1Zn0.2Fe2O4的磁滞回线图
Sample Magnetic parameters
Ms Mr Hc
PANI-Co0.7Cr0.1Zn0.2Fe2O4 8.80 3.14 37.22
Co0.7Cr0.1Zn0.2Fe2O4 73.84 28.43 38.91
表1  各物质的饱和磁化强度Ms、剩余磁化强度Mr和矫顽力Hc
图4  PANI-Co0.7Cr0.1Zn0.2Fe2O4和Co0.7Cr0.1Zn0.2Fe2O4的介电损耗(tanε=ε''/ε')随频率的变化曲线
图5  PANI-Co0.7Cr0.1Zn0.2Fe2O4和Co0.7Cr0.1Zn0.2Fe2O4的反射损耗随频率的变化曲线
1 J. W. Ye, Y. Liu, X. F. Chen, M. Yao,Microwave electromagnetic and absorption properties of Sm N/α-Fe/Sm2Fe17N3 composites in 0.5-18 GHz range, J. Alloys. Compd., 526, 59(2012)
2 S. Ke, W. L. Zhong, Y. Zhong,L Li, X. Jiang, H. Ji, Temperature dependence of core losses at high frequency for MnZn ferrites, Physical B, 405, 1018(2010)
3 WU Yanfei,HUANG Ying, ZHANG Yinling, NIU Lei, Several w-type barium ferrites with different Me2: preparation and the electromagnetic properties, Chinese Journal of Materials Research, 25(6), 607(2011)
3 (吴燕飞, 黄 英, 张银铃, 牛 磊, Me2-W型钡铁氧体的制备及其电磁性能研究, 材料研究学报, 25(6), 607(2011))
4 K. Gupta, P. C. Jana, A. K. Meikap,Electrical transport and optical properties of the composite of polyaniline with gold, Solid State Sci, 14, 324(2012)
5 Y. Yao, H. Y. Jiang, J. Wu, D. Gu, L. Shen,Synthesis of Fe3O4/polyaniline nanocomposite in reversed micelle systems and its performance characteristics, Proc. Eng., 27, 664(2012)
6 LI Yuanxun,LIU Yingli, ZHANG Huaiwu, LING Weiwei, XIE Yunsong, XIAO Johnqiang, Preparation, Characterization and properities of polyaniline-barium ferrite nanocomposite, Chemical Journal of Chinese Universities, 29(3), 640(2008)
6 (李元勋, 刘颖力, 张怀武, 凌味未, 谢云松, XIAO JohnQiang, 聚苯胺钡铁氧体纳米复合材料的制备、表征及性能, 高等学校化学学报, 29(3), 640(2008).)
7 S. P. Gairola, V. Verma, L. Kumar, M. A. Dar, S. Annapoomi, R. K. Kotnala,Enhanced microwave absorption properties in polyaniline and nano-ferrite composite in X-band, Synth. Met., 160, 2315(2010)
8 C. C. Yang, Y. J. Gung, W. C. Hung, T. H. Ting, K. H. Wu,Infrared and microwave absorbing properties of BaTiO3/polyaniline and BaFe12O19/polyaniline composites, Compos. Sci. Technol., 70, 466(2010)
9 R. T. Ma, Y. W. Tian, H. T. Zhao, G. Zhang, H. Zhao,Synthesis, Characterization and electromagnetic studies on nanocrystalline Co0.5Zn0.5Fe2O4 by polyacrylamide gel, J. Mater. Sci. & Technol., 24(4), 628(2008)
10 C. C. Hwang, J. S. Tasi, T. H. Huang,Combustion synthesis of Ni–Zn ferrite by using glycine and metal nitrates—investigations of precursor homogeneity, product reproducibility, and reaction mechanism, Mater. Chem. Phys., 93, 330(2005)
11 C. J. Leng, J. H. Wei, Z. Y. Liu, J. Shi,Influence of imidazolium-based ionic liquids on the performance of polyaniline-CoFe2O4 nanocomposites, J. Alloys Compd., 509, 3052(2011)
12 C. D. Prasanna, H. S. Jayanna, A. R. Lamani, S. Dash,Polyaniline/CoFe2O4 nanocomposites: A novel synthesis, characterization and magnetic properties, Synth. Met., 161, 2306(2011)
13 D. S. Birajadar, U. N. Debatwal, K. M. Jadhav,X-ray, IR and bulk magnetic properties of Cu1-xMnxFe2-2xO4 ferrite system, J. Mater. Sci., 37, 1443(2002)
14 L. C. Li, J. Jiang, F. Xu,Synthesis and ferromagnetic properities of novel Sm-substituted LiNi ferrite-polyaniline nanocomposite, Mater. Lett., 61, 1091(2007)
15 G. Namita, S. Kuldeep, O. Anil, D. P. Singh, S. K. Dhawan,Thermal, dielectric and microwave absorption properties of polyaniline-CoFe2O4 nanocomposites, Compos. Sci. Technol., 71, 1754(2011)
16 Y. P. Duan, G. L. Wu, X. G. Li,On the correlation between structural characterization and electromagnetic properties of doped polyaniline, Solid State Sci., 12, 1374(2010)
17 S. W. Phang, T. Hino, M. H. Abdullah, N. Kuramoto,Applications of polyaniline doubly doped with p-toluene sulphonic acid and dichloroacetic acid as microwave absorbing and shielding materials, Mater. Chem. Phys., 104, 327(2007)
18 T. H. Ting, R. P. Yu, Y. N. Jau,Synthesis and microwave absorption characteristics of polyaniline/NiZn ferrite composites in 2-40 GHz, Mater. Chem. Phys., 126, 364(2011)
[1] 潘新元, 蒋津, 任云飞, 刘莉, 李景辉, 张明亚. 热挤压钛/钢复合管的微观组织和性能[J]. 材料研究学报, 2023, 37(9): 713-720.
[2] 刘瑞峰, 仙运昌, 赵瑞, 周印梅, 王文先. 钛合金/不锈钢复合板的放电等离子烧结技术制备及其性能[J]. 材料研究学报, 2023, 37(8): 581-589.
[3] 季雨辰, 刘树和, 张天宇, 查成. MXene在锂硫电池中应用的研究进展[J]. 材料研究学报, 2023, 37(7): 481-494.
[4] 王伟, 解泽磊, 屈怡珅, 常文娟, 彭怡晴, 金杰, 王快社. Graphene/SiO2 纳米复合材料作为水基润滑添加剂的摩擦学性能[J]. 材料研究学报, 2023, 37(7): 543-553.
[5] 邵萌萌, 陈招科, 熊翔, 曾毅, 王铎, 王徐辉. C/C-ZrC-SiC复合材料的Si2+ 离子辐照行为[J]. 材料研究学报, 2023, 37(6): 472-480.
[6] 张藤心, 王函, 郝亚斌, 张建岗, 孙新阳, 曾尤. 基于界面氢键结构的石墨烯/聚合物复合材料的阻尼性能[J]. 材料研究学报, 2023, 37(6): 401-407.
[7] 张锦中, 刘晓云, 杨健茂, 周剑锋, 查刘生. 温度响应性双面纳米纤维的制备和性能[J]. 材料研究学报, 2023, 37(4): 248-256.
[8] 王刚, 杜雷雷, 缪自强, 钱凯成, 杜向博文, 邓泽婷, 李仁宏. 聚多巴胺改性碳纤维增强尼龙6复合材料的界面性能[J]. 材料研究学报, 2023, 37(3): 203-210.
[9] 林师峰, 徐东安, 庄艳歆, 张海峰, 朱正旺. TiZr基非晶/TC21双层复合材料的制备和力学性能[J]. 材料研究学报, 2023, 37(3): 193-202.
[10] 苗琪, 左孝青, 周芸, 王应武, 郭路, 王坦, 黄蓓. 304不锈钢纤维/ZL104铝合金复合泡沫的孔结构、力学、吸声性能及其机理[J]. 材料研究学报, 2023, 37(3): 175-183.
[11] 罗昱, 陈秋云, 薛丽红, 张五星, 严有为. 钠离子电池双层碳包覆Na3V2(PO4)3 正极材料的超声辅助溶液燃烧合成及其电化学性能[J]. 材料研究学报, 2023, 37(2): 129-135.
[12] 张开银, 王秋玲, 向军. FeCo/SnO2 复合纳米纤维的制备及其吸波性能[J]. 材料研究学报, 2023, 37(2): 102-110.
[13] 周聪, 昝宇宁, 王东, 王全兆, 肖伯律, 马宗义. (Al11La3+Al2O3)/Al复合材料的高温性能及其强化机制[J]. 材料研究学报, 2023, 37(2): 81-88.
[14] 谢东航, 潘冉, 朱士泽, 王东, 刘振宇, 昝宇宁, 肖伯律, 马宗义. 增强颗粒尺寸对B4C/Al-Zn-Mg-Cu复合材料微观组织及力学性能的影响[J]. 材料研究学报, 2023, 37(10): 731-738.
[15] 刘志华, 岳远超, 丘一帆, 卜湘, 阳涛. g-C3N4/Ag/BiOBr复合材料的制备及其光催化还原硝酸盐氮[J]. 材料研究学报, 2023, 37(10): 781-790.