Please wait a minute...
材料研究学报  2015, Vol. 29 Issue (8): 576-582    DOI: 10.11901/1005.3093.2014.696
  本期目录 | 过刊浏览 |
新型Al-Mg合金的耐腐蚀性能
孟春艳,张迪(),庄林忠,张济山
北京科技大学新金属材料国家重点实验室 北京 100083
Corrosion Performance of Newly Developed Al-Mg Alloys
Chunyan MENG,Di ZHANG(),Linzhong ZHUANG,Jishan ZHANG
State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing,Beijing 100083, China
引用本文:

孟春艳,张迪,庄林忠,张济山. 新型Al-Mg合金的耐腐蚀性能[J]. 材料研究学报, 2015, 29(8): 576-582.
Chunyan MENG, Di ZHANG, Linzhong ZHUANG, Jishan ZHANG. Corrosion Performance of Newly Developed Al-Mg Alloys[J]. Chinese Journal of Materials Research, 2015, 29(8): 576-582.

全文: PDF(8508 KB)   HTML
摘要: 

采用晶间腐蚀、剥落腐蚀实验结合扫描、透射电镜等手段观察分析腐蚀后合金的微观形貌和相结构, 研究了合金元素和热变形工艺对新型Al-Mg合金的抗晶间腐蚀和剥落腐蚀性能的影响。结果表明: 随着Mg含量的增加合金在浓硝酸溶液中的腐蚀失重量增大, 抗晶间腐蚀性能降低; 合金中Zn含量的的提高导致在晶界上形成了不连续析出的Mg32(Al, Zn)49相, 降低了合金的腐蚀失重量, 提高了Al-Mg合金的抗晶间腐蚀性能。合金的抗腐蚀性能也受形变热处理工艺的影响, 对冷变形后的合金进行适当的稳定化处理, 相比单纯的冷变形可同时提高合金的抗晶间腐蚀性能与剥落腐蚀性能。冷变形后的残余应力、高位错密度以及拉长晶粒形貌都导致更多的析出相在晶界连续析出, 形成网状膜, 使合金的抗腐蚀性能降低。

关键词 金属材料Al-Mg合金晶间腐蚀剥落腐蚀稳定化处理    
Abstract

The corrosion behavior of the newly developed Al-Mg alloys was investigated in terms of their alloying element and thermo-mechanical treatments by means of intergranular corrosion test, exfoliation corrosion test, scanning electron microscopy and transmission electron microscopy. The results show that, with the increase of Mg content the mass loss of the alloys in concentrated nitric acid increased, correspondingly their intergranular corrosion resistance decreases. Zn addition to the Al-Mg alloys led to the formation of Mg32(Al, Zn)49 phase at the grain boundary, which dramatically increased the intergranular corrosion resistance of the alloys. The corrosion resistance of the alloys was also modified by thermo-mechanical treatment. Both intergranular corrosion resistance and exfoliation corrosion resistance of the alloys were dramatically increased by a proper post stabilizing treatment after cold rolling reduction. The residual stress, higher dislocation density and morphology of elongated grains after cold rolling reduction can lead to more continuous precipitation at the grain boundary, thus decrease the corrosion resistance of the alloys.

Key wordsmetallic materials    Al-Mg alloys    intergranular corrosion    exfoliation corrosion    stabilizing treatment
收稿日期: 2014-11-24     
基金资助:* 国家自然科学基金51301017,现代交通金属材料与加工技术北京实验室课题和新金属材料国家重点实验室自主课题2014Z-09资助项目。
Alloy No. Mg Mn Zn Cu Fe Cr Ti Al
0 5.7 0.8 0.0 0.15 0.2 0.03 0.07 Bal.
1 5.0 0.8 0.6 0.15 0.2 0.03 0.07 Bal.
2 5.5 0.8 0.6 0.15 0.2 0.03 0.07 Bal.
3 5.8 0.8 0.6 0.15 0.2 0.03 0.07 Bal.
4 5.5 0.8 1.0 0.15 0.2 0.03 0.07 Bal.
5 5.8 0.8 1.0 0.15 0.2 0.03 0.07 Bal.
表1  合金的化学成分
Temper Treatment process Experimental test
A cold hardening recrystallization-cold rolling Intergranular corrosion
B stabilization recrystallization-cold rolling- stabilization Intergranular corrosion
C cold hardening+ sensitizing treatment recrystallization-cold rolling- sensitizing Intergranularcorrosion exfoliation corrosion
D stabilization+ sensitizing treatment recrystallization-cold rolling-stabilization-sensitizing Intergranular corrosion exfoliation corrosion
表2  实验中不同热处理工艺路线
图1  合金在不同状态下的晶间腐蚀质量损失量
图2  合金4稳定化和稳定化及敏化后的腐蚀形貌SEM像
图3  合金3稳定化及敏化后的晶间腐蚀形貌图
图4  合金稳定化及敏化后的晶界形貌图
图5  合金3中Mg32(Al, Zn)49相的高分辨形貌图与衍射
图6  合金稳定化及敏化后剥落腐蚀的宏观照片
图7  冷作硬化与敏化处理后合金的剥落腐蚀形貌
1 HUO Richang,SHI Zhiming, YUAN Xiaoming, Effect of cold deformation on microstructure of 5182 aluminium alloy, Journal of Inner Mongolia University of Science and Technology, 30(2), 114(2011)
1 (霍日昌, 史志铭, 袁晓鸣, 冷变形对5182铝合金组织的影响, 内蒙古科技大学学报, 30(2), 114(2011))
2 ZHANG Ke,HUANG Guangjie, WANG Lingyun, LIU Zhenghong, Effects of cold deformation and stabilizing treatment on corrosion resistance of 5083 aluminum alloy, Materials for Mechanical Engineering, 35(9), 5(2011)
2 (张 珂, 黄光杰, 汪凌云, 刘正宏, 冷变形量及稳定化处理对5083铝合金耐腐蚀性能的影响, 机械工程材料, 35(9), 5(2011))
3 R. K. Gupta, R. Zhang, C. H. J. Davies, N. Birbilis,Influence of Mg content on the sensitization and corrosion of Al-xMg(-Mn) Alloys, Corrosion, 69(11), 1081(2013)
4 TANG Mingjun,JI Zesheng, LV Xinyu, The research progress of 5xxx aluminium alloy, Light alloy fabrication technology, 32(7), 1(2004)
4 (唐明君, 吉泽升, 吕新宇, 5×××系铝合金的研究进展, 轻合金加工技术, 32(7), 1(2004))
5 GUO Zhibin,5056 aluminum alloy cold-deforming products precipitation effect, Light alloy fabrication technology, 38(10), 27(2010)
5 (郭志斌,5056铝合金冷变形制品的沉淀效应, 轻合金加工技术, 38(10), 27(2010))
6 R. E. Sanders Jr, P. A. Hollinshead, E. A. Simielli,Industrial development of non-heat treatable aluminum alloys, Materials Forum, 28, 53(2004)
7 L. Kramer, M. Phillippi, W. T. Tack, C. Wong,Locally reversing sensitization in 5xxx aluminum Plate, Journal of Materials Engineering andPerformance, 21(6), 1025(2012)
8 R. Ender, P. Miljana,Problems and prospect of Al-Mg alloys application in marine constructions, Journal of Metallurgy, 297(2006)
9 R. H. Jones, V. Y. Gertsman, J. S. Vetrano, C. F. WindischJr,Crack-particle interactions during intergranular stress corrosion of AA5083 as observed by cross-section transmission electron microscopy, ScriptaMaterialia, 50(10), 1355(2004)
10 Y. Yang, T. Allen. Direct visualization of β phase causing intergranular forms of corrosion in Al-Mg alloys, Materials Characterization, 80(1), 76(2013)
11 R. C. Picu, D. Zhang. Atomistic study of pipe diffusion in Al-Mg alloys, ActaMaterialia, 52(1), 161(2004)
12 C. Y. Meng, D. Zhang, H. Cui, L. Z. Zhuang, J. S. Zhang,Effect of stabilizing treatment on the intergranular corrosion behavior of high strength Al-Mg alloys, Mater Science Forum, 794, 253(2014)
13 L. Tan, T. R. Allen,Effect of thermomechanical treatment on the corrosion of AA5083, Corrosion Science, 52(2), 548(2010)
14 X. G. Fan, D. M. Jiang, Q. C. Meng,The microstructural evolution of an Al-Zn-Mg-Cu alloy during homogenization, Materials Letters, 60, 1475(2006)
15 L. F. Mondolfo, Aliminum alloys: structure and propertys, (Beijing, The Press of Metallurgical Industry, 1988) p.78
15 (78)
16 N. Birbilis, R. G. Buchheit,Electrochemical characteristics of intermetallic phases in aluminum alloys, Journal of The Electrochemical Society, 152(4), B104(2005)
17 M. Keddam, C. Kuntz, H. Takenouti, D. Schustert, D. Zuili,Exfoliation corrosion of aluminium alloys examined by electrode impedance, ElectrochimicaActa, 42(1), 87(1997)
18 A. Aballe, M. Bethencourt, F.J. Botana,Localized alkaline corrosion of alloy AA5083 in neutral 3.5% NaCl solution, Corrosion Science, 43, 1657(2001)
19 K. Jafarzadeh, T. Shahrabi, S. M. M. Hadavi, M. G. Hosseini,Role of chloride ion and dissolved oxygen in electrochemical corrosion of AA5083-H321 aluminum-magnesium alloy in NaCl solutions under flow conditions, Journal of Materials Scienceand Technology, 23(5), 623(2007)
20 K. A. Yaskau, M. L. Zheludkevich, S. V. Lamaka, M. G. S. Ferreira,Role of intermetallic phases in localized corrosion of AA5083, ElectrochimicaActa, 52, 7651(2007)
21 J. R. Davis,Corrosion of aluminium and aluminium alloys, American society for Metals, Materials Park, OH, 1999
[1] 毛建军, 富童, 潘虎成, 滕常青, 张伟, 谢东升, 吴璐. AlNbMoZrB系难熔高熵合金的Kr离子辐照损伤行为[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] 赵政翔, 廖露海, 徐芳泓, 张威, 李静媛. 超级奥氏体不锈钢24Cr-22Ni-7Mo-0.4N的热变形行为及其组织演变[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] 幸定琴, 涂坚, 罗森, 周志明. C含量对VCoNi中熵合金微观组织和性能的影响[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] 欧阳康昕, 周达, 杨宇帆, 张磊. LPSOMg-Y-Er-Ni合金的组织和拉伸性能[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] 徐利君, 郑策, 冯小辉, 黄秋燕, 李应举, 杨院生. 定向再结晶对热轧态Cu71Al18Mn11合金的组织和超弹性性能的影响[J]. 材料研究学报, 2023, 37(8): 571-580.
[8] 熊诗琪, 刘恩泽, 谭政, 宁礼奎, 佟健, 郑志, 李海英. 固溶处理对一种低偏析高温合金组织的影响[J]. 材料研究学报, 2023, 37(8): 603-613.
[9] 刘继浩, 迟宏宵, 武会宾, 马党参, 周健, 徐辉霞. 喷射成形M3高速钢热处理过程中组织的演变和硬度偏低问题[J]. 材料研究学报, 2023, 37(8): 625-632.
[10] 由宝栋, 朱明伟, 杨鹏举, 何杰. 合金相分离制备多孔金属材料的研究进展[J]. 材料研究学报, 2023, 37(8): 561-570.
[11] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[12] 王昊, 崔君军, 赵明久. 镍基高温合金GH3536带箔材的再结晶与晶粒长大行为[J]. 材料研究学报, 2023, 37(7): 535-542.
[13] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.
[14] 秦鹤勇, 李振团, 赵光普, 张文云, 张晓敏. 固溶温度对GH4742合金力学性能及γ' 相的影响[J]. 材料研究学报, 2023, 37(7): 502-510.
[15] 刘天福, 张滨, 张均锋, 徐强, 宋竹满, 张广平. 缺口应力集中系数对TC4 ELI合金低周疲劳性能的影响[J]. 材料研究学报, 2023, 37(7): 511-522.