Please wait a minute...
材料研究学报  2015, Vol. 29 Issue (7): 489-495    DOI: 10.11901/1005.3093.2014.417
  本期目录 | 过刊浏览 |
多态碳纤维复合材料的垂直剪切断裂行为
郭玉琴(),杨艳,孙民航,汤鹏鹏
江苏大学机械工程学院 镇江 212013
Vertical Shearing Fracture Behavior of Carbon Fiber Reinforced Plastic of Different Status
Yuqin GUO(),Yan YANG,Minhang SUN,Pengpeng TANG
School of Mechanical Engineering, Jiangsu University, Zhenjiang 212013, China
引用本文:

郭玉琴,杨艳,孙民航,汤鹏鹏. 多态碳纤维复合材料的垂直剪切断裂行为[J]. 材料研究学报, 2015, 29(7): 489-495.
Yuqin GUO, Yan YANG, Minhang SUN, Pengpeng TANG. Vertical Shearing Fracture Behavior of Carbon Fiber Reinforced Plastic of Different Status[J]. Chinese Journal of Materials Research, 2015, 29(7): 489-495.

全文: PDF(2736 KB)   HTML
摘要: 

针对由环氧树脂膜及增强碳纤维织物交替铺放构成的碳纤维复合材料(CFRP)随温度变化所呈现的干态(室温固态)、软态(玻璃态转化温度区间)、湿态(树脂融熔温度区间)及固态(开始固化温度)特征, 使用自主设计的剪切冲裁模具进行系列冲裁实验, 分析了多态CFRP材料在不同工艺条件下的垂直剪切断裂行为和特征, 并解释了相应的影响机理。结果表明: 相对于干态碳纤维织物, 干态/固态、软态、湿态CFRP材料在垂直剪切断裂过程中呈现出典型的非线性变形、非连续、分层断裂特性, 但是剪切断裂所需的最大载荷依次增大; 另外, 较小的冲裁间隙和剪切角度、较高的冲裁速度有利于减弱局部纤维束的非连续断裂, 使分层断裂更为集中和稳定。

关键词 复合材料CFRP垂直剪切断裂行为冲裁    
Abstract

Carbon fiber reinforced plastic (CFRP) was fabricated by alternately laying epoxy resin films and carbon fiber fabrics for a desired number of layers. The prepared CFRP could be in different status such as dry, soft, wet and solid corresponding to ambient temperature, and temperatures of glass transition and melting and curing of resin films, respectively. Blanking tests were performed by means of a home made shearing blanking die to characterize the vertical shearing fracture for the prepared CFRP of different status. Results show that the vertical shearing fracture of the dry/solid, soft and wet CFRPs present characteristics of typical nonlinear deformation, discontinuous and delaminating fracture, and the required blanking forces increase in turn. Moreover, blanking with a small gap, proper angle and high speed may be helpful to relieve the discontinuous fracture of partial carbon fiber yarns and promote the delaminating fracture of CFRPs to be much concentrated and stability.

Key wordscomposites    CFRP    vertical shearing    fracture behavior    cutting
收稿日期: 2014-08-11     
基金资助:* 国家自然科学基金51105180资助项目。
图1  冲裁模具结构图及其在实验机上的安装图
No. Carbon fiber twill layer Number of resin film pieces Gap /mm Velocity /mm/min Tool angle Temperature /℃
1 1 0 0.1 60 60° 25
2 2 0 0.1 60 60° 25
3 3 0 0.1 60 60° 25
4 4 0 0.1 60 60° 25
5 2 15 0.1 60 60° 25
6 3 30 0.1 60 60° 25
7 4 45 0.1 60 60° 25
8 3 30 0.1 60 60° 80
9 3 30 0.1 60 60° 110
10 3 30 0.1 60 60° 150
11 3 30 0.05 60 60° 110
12 3 30 0.2 60 60° 110
13 3 30 0.5 60 60° 110
14 3 30 0.8 60 60° 110
15 3 30 0.1 30 60° 110
16 3 30 0.1 120 60° 110
17 3 30 0.1 240 60° 110
18 3 30 0.1 60 45° 110
19 3 30 0.1 60 20° 110
表1  CFRP剪切冲裁实验方案
图2  不同温度下CFRP材料剪切冲裁过程中的载荷-时间曲线
图3  碳纤维织物层数不同的CFRP试样剪切冲裁时的载荷-时间曲线和应力-应变曲线
图4  CFRP试样有/无树脂膜时剪切冲裁过程的载荷-时间曲线
图5  CFRP试样断裂所需最大裁切力与树脂膜层数的关系
图6  对于不同冲裁间隙CFRP试样剪切冲裁时的载荷-时间曲线
图7  CFRP试样断裂所需最大裁切力与冲裁间隙的关系
图8  对于不同冲裁速率CFRP试样湿态剪切冲裁时的载荷-时间曲线
图9  CFRP试样断裂所需最大裁切力与冲裁速率的关系
图10  对于不同剪切角度CFRP试样剪切冲裁时的载荷-时间曲线
图11  CFRP试样断裂所需最大裁切力与剪切角度的关系
1 DU Shanyi,Advanced composite materials and aerospace engineering, Acta Materiae Compositae Sinica, 24(1), 1(2007)
1 (杜善义, 先进复合材料与航空航天, 复合材料学报, 24(1), 1(2007))
2 CHEN Shaojie,Application of advanced composites on automotive filed, Hi-Tech Fiber & Application, 36(1), 11(2011)
2 (陈绍杰, 先进复合材料在汽车领域的应用, 高科技纤维与应用, 36(1), 11(2011))
3 CHEN Lijun,WU Fengqin, ZHANG Xinyu, YANG Jian, LI Rongxian, Application and molding techniques of EP/CF composite, Engineering Plastics Application, 35(10), 77(2007)
3 (陈立军, 武凤琴, 张欣宇, 杨 建, 李荣先, 环氧树脂/碳纤维复合材料的成型工艺与应用, 工程塑料应用, 35(10), 77(2007))
4 WANG Xueming,XIE Fuyuan, LI Min, DAI Di, WANG Fei, ZHANG Zuoguang, Effect rules of complex structure on manufacturing defects for composites in autoclave molding, Acta Aeronautica ET Astronautica Sinica, 30(4), 757(2009)
4 (王雪明, 谢富原, 李 敏, 戴 棣, 王 菲, 张佐光, 热压罐成型复合材料复杂结构对制造缺陷的影响规律, 航空学报, 30(4), 757(2009))
5 HUANG Jiakang, Forming Technology of Composite Material and Its Application (BeiJing, Chemical Industry Press, 2011)p.183
5 (183)
6 ZHANG Xiuyan,YANG Zhizhong, WANG Chunyu, Process and application of resin film infusion (RFI), Fiber Composites, 2, 39(2004)
6 (张秀艳, 杨志忠, 王春雨, 树脂膜渗透(RFI)成型工艺及其应用, 纤维复合材料, 2, 39(2004))
7 Yuqin Guo,Zhao Meng, Fuzhu Li, Wei Chen, Juan Guo, An integrated manufacturing process of CFRP parts based on RFI and cutting process, Applied Mechanics and Materials, 365, 1090(2013)
8 J. P. Quinn, A. T. Mcllhagger, R. Mcllhagger,Examination of the failure of 3D woven composites, Composites: Part A, 39, 273(2008)
9 F. Aymerich, P. Priolo,Characterization of fracture modes in stitched and unstitched cross-ply laminates subjected to low-velocity impact and compression after impact loading, International Journal of Impact Engineering, 35, 591(2008)
10 A. Plumtree, M. Melo, J. Dahl,Damage evolution in a [±45°] CFRP laminate under block loading conditions, International Journal of Fatigue, 32, 139(2010)
11 M. R. Esfahani, M. R. Kianoush, A. R. Moradi,Punching shear strength of interior slab-column connections strengthened with carbon fiber reinforced polymer sheets, Engineering Structures, 31, 1535(2009)
12 BAO Yongjie,GAO Hang, Drilling disfigurements formation analysis and solution of CFRP, Journal of Material Engineering, S2, 254(2009)
12 (鲍永杰, 高 航, 碳纤维复合材料构件加工缺陷与高效加工对策, 材料工程, S2, 254(2009))
13 I. S. Shyha, D.K. Aspinwall, S.L. Soo, S. Bradley,Drill geometry and operating effects when cutting small diameter holes in CFRP, Machine Tools and Manufacture, 49(12), 1008(2009)
14 ZHANG Lingling,JIANG Zhaohua, ZHANG Wei, PAN Yong, WANG Jianchao, HAN Hua, A review of laser processing fiber -reinforced flexible composite material, Applied Laser, 32(3), 238(2012)
14 (张玲玲, 姜兆华, 张 伟, 潘 涌, 王健超, 韩 华, 超强度纤维柔性复合材料激光加工工艺研究, 应用激光, 32(3), 238(2012))
15 Dirk Herzog,Peter Jaeschke, Oliver Meier, Heinz Haferkamp, Investigations on the thermal effect caused by laser cutting with respect to static strength of CFRP, Machine Tools and Manufacture, 48(12), 1464(2008)
[1] 潘新元, 蒋津, 任云飞, 刘莉, 李景辉, 张明亚. 热挤压钛/钢复合管的微观组织和性能[J]. 材料研究学报, 2023, 37(9): 713-720.
[2] 刘瑞峰, 仙运昌, 赵瑞, 周印梅, 王文先. 钛合金/不锈钢复合板的放电等离子烧结技术制备及其性能[J]. 材料研究学报, 2023, 37(8): 581-589.
[3] 季雨辰, 刘树和, 张天宇, 查成. MXene在锂硫电池中应用的研究进展[J]. 材料研究学报, 2023, 37(7): 481-494.
[4] 王伟, 解泽磊, 屈怡珅, 常文娟, 彭怡晴, 金杰, 王快社. Graphene/SiO2 纳米复合材料作为水基润滑添加剂的摩擦学性能[J]. 材料研究学报, 2023, 37(7): 543-553.
[5] 张藤心, 王函, 郝亚斌, 张建岗, 孙新阳, 曾尤. 基于界面氢键结构的石墨烯/聚合物复合材料的阻尼性能[J]. 材料研究学报, 2023, 37(6): 401-407.
[6] 邵萌萌, 陈招科, 熊翔, 曾毅, 王铎, 王徐辉. C/C-ZrC-SiC复合材料的Si2+ 离子辐照行为[J]. 材料研究学报, 2023, 37(6): 472-480.
[7] 张锦中, 刘晓云, 杨健茂, 周剑锋, 查刘生. 温度响应性双面纳米纤维的制备和性能[J]. 材料研究学报, 2023, 37(4): 248-256.
[8] 王刚, 杜雷雷, 缪自强, 钱凯成, 杜向博文, 邓泽婷, 李仁宏. 聚多巴胺改性碳纤维增强尼龙6复合材料的界面性能[J]. 材料研究学报, 2023, 37(3): 203-210.
[9] 林师峰, 徐东安, 庄艳歆, 张海峰, 朱正旺. TiZr基非晶/TC21双层复合材料的制备和力学性能[J]. 材料研究学报, 2023, 37(3): 193-202.
[10] 苗琪, 左孝青, 周芸, 王应武, 郭路, 王坦, 黄蓓. 304不锈钢纤维/ZL104铝合金复合泡沫的孔结构、力学、吸声性能及其机理[J]. 材料研究学报, 2023, 37(3): 175-183.
[11] 张开银, 王秋玲, 向军. FeCo/SnO2 复合纳米纤维的制备及其吸波性能[J]. 材料研究学报, 2023, 37(2): 102-110.
[12] 周聪, 昝宇宁, 王东, 王全兆, 肖伯律, 马宗义. (Al11La3+Al2O3)/Al复合材料的高温性能及其强化机制[J]. 材料研究学报, 2023, 37(2): 81-88.
[13] 罗昱, 陈秋云, 薛丽红, 张五星, 严有为. 钠离子电池双层碳包覆Na3V2(PO4)3 正极材料的超声辅助溶液燃烧合成及其电化学性能[J]. 材料研究学报, 2023, 37(2): 129-135.
[14] 刘志华, 岳远超, 丘一帆, 卜湘, 阳涛. g-C3N4/Ag/BiOBr复合材料的制备及其光催化还原硝酸盐氮[J]. 材料研究学报, 2023, 37(10): 781-790.
[15] 谢东航, 潘冉, 朱士泽, 王东, 刘振宇, 昝宇宁, 肖伯律, 马宗义. 增强颗粒尺寸对B4C/Al-Zn-Mg-Cu复合材料微观组织及力学性能的影响[J]. 材料研究学报, 2023, 37(10): 731-738.