Please wait a minute...
材料研究学报  2015, Vol. 29 Issue (3): 235-240    DOI: 10.11901/1005.3093.2014.494
  本期目录 | 过刊浏览 |
Al-Zn-Mg-(Cu)合金线性升温时效后的性能
曾苗霞,林振铭,李文涛,金曼()
上海大学材料科学与工程学院 上海 200072
Property of Al-Zn-Mg-(Cu) Alloy after Linear Heating Aging Treatment
Miaoxia ZENG,Zhenming LIN,Wentao LI,Man JIN()
School of Materials Science and Engineering, Shanghai University, Shanghai 200072, China
引用本文:

曾苗霞,林振铭,李文涛,金曼. Al-Zn-Mg-(Cu)合金线性升温时效后的性能[J]. 材料研究学报, 2015, 29(3): 235-240.
Miaoxia ZENG, Zhenming LIN, Wentao LI, Man JIN. Property of Al-Zn-Mg-(Cu) Alloy after Linear Heating Aging Treatment[J]. Chinese Journal of Materials Research, 2015, 29(3): 235-240.

全文: PDF(3937 KB)   HTML
摘要: 

用差示扫描量热分析(DSC)、硬度分析、透射电镜(TEM)、三维原子探针(3DAP)分析等手段研究了Al-Zn-Mg-(Cu)合金线性升温时效析出相的析出规律、性能变化和Cu对合金的影响。结果表明: 随着时效温度的提高Al-Zn-Mg合金和 Al-Zn-Mg-Cu合金的硬度先上升达到峰值然后下降, Al-Zn-Mg-Cu合金的硬度高于Al-Zn-Mg合金。线性升温峰时效后两种合金的主要析出相为η'相, 都含有少量的GP区和η相。Cu的添加改变了析出相的化学成分和结构, 延缓了亚稳相向平衡相的转变。

关键词 金属材料Al-Zn-Mg-(Cu)合金线性升温时效析出相    
Abstract

Effect of linear heating aging process and the Cu content on the performance and the formation of precipitates of Al-Zn-Mg-(Cu) alloy was investigated by means of differential scanning calorimeter (DSC), hardness tester, transmission electron microscopy(TEM) and three-dimensional atom probe (3DAP). The results show that with the increase of the aging temperature the hardness rises firstly and then decreases after reaching a peak. After aging at every selected temperature of the linear heating aging treatment process, all the relevant hardness of the Al-Zn-Mg-Cu alloy is higher than that of the Al-Zn-Mg alloy. After aging at peak point by linear heating, the main precipitates are η' phase, while there exists small quantities of η phase and GP zone for the two alloys Al-Zn-Mg and Al-Zn-Mg-Cu. However the addition of Cu may induces certain change of the composition and morphology of the precipitates and delay their transition from metastable state to stable state.

Key wordsmetallic materials    Al-Zn-Mg-(Cu) alloy    linear heating    aging process    precipitate
收稿日期: 2014-09-12     
Alloy Zn Mg Cu Zr Si Fe Al
Al-Zn-Mg 7.82 1.57 0.003 0.139 0.031 0.02 Bal.
Al-Zn-Mg-Cu 7.8 1.59 1.64 0.14 0.026 0.07 Bal.
表1  实验合金的成分
图1  固溶态合金的DSC曲线
图2  Al-Zn-Mg-(Cu)合金以20℃/h的速度线性升温时效过程中的硬度变化曲线
图3  Al-Zn-Mg合金线性升温至180℃时效后的TEM照片
图4  Al-Zn-Mg-Cu合金线性升温至190℃时效后的TEM照片
图5  Al-Zn-Mg合金整体形貌以及Mg原子和Zn原子的偏聚3DAP分布图
图6  Al-Zn-Mg-Cu合金的整体形貌、各元素偏聚3DAP分布图、Zn原子和Cu原子的3DAP分布图
Alloy Cluster Size range (atoms) Composition range (%, atom fraction) Zn/Mg (Zn+Cu)/Mg Number ratio(%)
Zn Mg Cu
Al-Zn-Mg GP 20-58 8-50 7-38 1.52 8.5
η' 63-1011 40-624 23-387 1.81 73.6
η 532-2454 351-1601 179-853 1.87 17.5
Al-Zn-Mg-Cu GP 20-84 9-28 2-24 0-8 1.45 1.83 30.3
η' 61-1608 40-938 15-550 3-120 1.87 2.13 54.4
η 1053-3436 607-2347 328-1214 73-271 1.96 2.19 15.3
表2  两种合金线性升温时效后形成团簇的形态、尺寸及成分
图7  Al-Zn-Mg合金球状团簇放大图和相应成分-距离分布图
图8  Al-Zn-Mg-Cu合金长条状团簇的放大图(13 nm×6 nm×8 nm)和相应的成分-距离分布图
1 WANG Hongbin,HUANG Jinfeng, YANG Bin, Current statusand future directions of ultrahigh strength Al-Zn-Mg-Cu aluminum alloys, Materials Review, 17(9), 1(2003)
1 (王洪斌, 黄进峰, 杨 滨, Al-Zn-Mg-Cu 系超高强度铝合金的研究现状与发展趋势, 材料导报, 17(9), 1(2003))
2 D. K. Xu, N. Birbilis, P. A .Rometsch, B.C. Muddle,Effect of solution treatment on the corrosion behaviour of aluminium alloy AA7150: Optimisation for corrosion resistance, Corrosion Science, 53(1), 217(2011)
3 J .C .Willams,Progress in structural materials for aerospace systems, Acta Materialia, 51(19), 5775(2003)
4 DONG Xianjuan,LI Hongying, Study on aging process for large 7475 aluminum alloy, Forgings Aluminum Fabrication, 163(4), 22(2005)
4 (董显娟, 李红英,7475 铝合金大型锻件时效工艺研究, 铝加工, 163(4), 22(2005))
5 T. Marlaud, A.Deschamps, F. Biey, W. Lefebver, B. Baroux,Influence of alloy composition and heat treatment on precipitate composition in Al-Zn-Mg-Cu alloys, Acta Materialia, 58(1), 248(2010)
6 I. J. Polmear,A trace element effect in alloys based on the Al-Zn-Mg system, Nature, 186(7), 303(1960)
7 I. J. Polmear,The ageing characteristics of complex Al-Zn-Mg alloys, distinctive effects of copper and silver on the ageing mechanism, Journal Institute of Metals, 89(2), 51(1960)
8 A. Deschamps, F. Livet, Y. Bréchet,Influence of predeformation on ageing in an Al-Zn-Mg alloy: I. Microstructure evolution and mechanical properties, Acta Materialia, 47(1): 281(1998)
9 R. Ferragut, A. Somaza, A. Tolley,Microstructural evolution of 7012 alloy during the early stages of artificial ageing, Acta Materialia, 47(17), 4355(1994)
10 L. K. Berg, V. Hansen, X. Z. Li, M. K. Wedel, G. Waterloo, D. Schryvers, L. R. Wallenberg,GP-zone in Al-Zn-Mg alloys and their role in artificial aging, Acta Materialia, 49(17), 3443(2001)
11 J. T. Staley,Method and process of non-isothermal for aluminum alloys, US Patent, 0237113Al(2007)
12 FANG Xu,Effects of Cu content on structures and properties of Al-Zn-Mg alloys, Master Thesis, Central South University(2012)
12 (方 旭,Cu对Al-Zn-Mg合金时效微观组织及性能影响的研究, 硕士论文, 中南大学(2012))
13 J.Z. Liu, J.H. Chen, X.B. Yang, S. Ren,Revisiting the precipitation sequence in Al-Zn-Mg-based alloys by high-resolution transmission electron microscopy, Acta Materialia, 63(11), 1061(2010)
14 M. Nicolas, A. Deschamps,Characterization and modeling of precipitate evolution in an Al-Zn-Mg alloy during non-isothermal heat treatments, Acta Materialia, 51(20), 6077(2003)
15 M. Murayama, K. Hono,Pre-precipitate clusters and precipitation processes in Al-Mg-Si alloys, Acta Materialia, 47(5), 1537(1999)
16 S. K. Maloney, K. Hono, I. J. Polmear, S. P. Ringer,The chemistry of precipitates in an aged Al-2.1Zn-1.7Mg at.% alloy, Scripta Materialia, 41(10), 1031(1999)
17 G. Sha, A. Gerezo,Early-stage precipitation in Al-Zn-Mg-Cu alloy (7050), Acta Materialia, 52(15), 4503(2004)
[1] 毛建军, 富童, 潘虎成, 滕常青, 张伟, 谢东升, 吴璐. AlNbMoZrB系难熔高熵合金的Kr离子辐照损伤行为[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] 赵政翔, 廖露海, 徐芳泓, 张威, 李静媛. 超级奥氏体不锈钢24Cr-22Ni-7Mo-0.4N的热变形行为及其组织演变[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] 幸定琴, 涂坚, 罗森, 周志明. C含量对VCoNi中熵合金微观组织和性能的影响[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] 欧阳康昕, 周达, 杨宇帆, 张磊. LPSOMg-Y-Er-Ni合金的组织和拉伸性能[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] 徐利君, 郑策, 冯小辉, 黄秋燕, 李应举, 杨院生. 定向再结晶对热轧态Cu71Al18Mn11合金的组织和超弹性性能的影响[J]. 材料研究学报, 2023, 37(8): 571-580.
[8] 熊诗琪, 刘恩泽, 谭政, 宁礼奎, 佟健, 郑志, 李海英. 固溶处理对一种低偏析高温合金组织的影响[J]. 材料研究学报, 2023, 37(8): 603-613.
[9] 刘继浩, 迟宏宵, 武会宾, 马党参, 周健, 徐辉霞. 喷射成形M3高速钢热处理过程中组织的演变和硬度偏低问题[J]. 材料研究学报, 2023, 37(8): 625-632.
[10] 由宝栋, 朱明伟, 杨鹏举, 何杰. 合金相分离制备多孔金属材料的研究进展[J]. 材料研究学报, 2023, 37(8): 561-570.
[11] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[12] 王昊, 崔君军, 赵明久. 镍基高温合金GH3536带箔材的再结晶与晶粒长大行为[J]. 材料研究学报, 2023, 37(7): 535-542.
[13] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.
[14] 秦鹤勇, 李振团, 赵光普, 张文云, 张晓敏. 固溶温度对GH4742合金力学性能及γ' 相的影响[J]. 材料研究学报, 2023, 37(7): 502-510.
[15] 刘天福, 张滨, 张均锋, 徐强, 宋竹满, 张广平. 缺口应力集中系数对TC4 ELI合金低周疲劳性能的影响[J]. 材料研究学报, 2023, 37(7): 511-522.