Please wait a minute...
材料研究学报  2015, Vol. 29 Issue (3): 227-234    DOI: 10.11901/1005.3093.2014.051
  本期目录 | 过刊浏览 |
循环热处理对Ti-V微合金钢组织和力学性能的影响
吕政1,任学平1(),李志宏2,计霞1,卢子明1
1. 北京科技大学材料科学与工程学院 北京 100083
2. 四川工程职业技术学院 德阳 618000
Effect of Cyclic Heat Treatment on Microstructure and Mechanical Properties of Ti-V Microalloyed Steel
Zheng LV1,Xueping REN1,*(),Zhihong LI2,Xia JI1,Ziming LU1
1. School of Materials Science and Engineering, University of Science and Technology Beijing,
Beijing 100083, China
2. Sichuan Engineering Technical College, Deyang 618000, China
引用本文:

吕政,任学平,李志宏,计霞,卢子明. 循环热处理对Ti-V微合金钢组织和力学性能的影响[J]. 材料研究学报, 2015, 29(3): 227-234.
Zheng LV, Xueping REN, Zhihong LI, Xia JI, Ziming LU. Effect of Cyclic Heat Treatment on Microstructure and Mechanical Properties of Ti-V Microalloyed Steel[J]. Chinese Journal of Materials Research, 2015, 29(3): 227-234.

全文: PDF(7303 KB)   HTML
摘要: 

研究了循环热处理对Ti-V微合金钢组织和力学性能的影响。根据显微组织观察结果对各个循环次数的试验钢晶粒尺寸进行统计和计算, 并结合SEM二次电子像揭示了试验钢在循环热处理过程中的组织演变规律, 进而解释了晶粒细化机制; 对试验钢进行TEM实验, 观察了沉淀相粒子的尺寸、成分随循环次数的变化规律。并对不同循环次数下的试验钢进行了室温抗拉强度和冲击韧性实验。结果表明, Ti-V微合金钢的平均晶粒尺寸随着循环次数的增加持续减小(至第7次循环); 受复杂碳化物平均尺寸的影响, 抗拉强度Rm随着循环次数的增加逐渐降低(自第1次循环开始); 而冲击吸收功AKU则因平均晶粒尺寸和先共析铁素体比例的共同影响, 随循环次数的增加先升高后降低, 并在第3次循环时达到最大。

关键词 金属材料循环热处理Ti-V微合金钢晶粒细化复杂碳化物力学性能    
Abstract

Effect of cyclic heat treatment on microstructure and mechanical properties of a Ti-V microalloyed steel was investigated. Therefore, the metallographic microstructure of the steels after heat treatment for each cycle was succesively examined and the relevant grain size was statistically determined; the cyclically heat-treated steels were also examined by means of SEM and TEM in order to reveal the microstructural evolution and the variations of average size and composition of precipitates in the steels with the increasing cycle number; while their tensile strength and toughness were measured. The results show that with the increasing cycle number, the average grain size of the steels decreases continuously. For mechanical properties, Rm has the same regularity due to the increase of mean size of the complex carbide with cycle numbers, while the AKU initially increases and thereafter decreases as a result of the joint influence of the average grain size and the proportion of proeutectoid ferrite.

Key wordsmetallic materials    cyclic heat treatment    Ti-V microalloyed steel    grain refinement    complex carbides    mechanical properties
收稿日期: 2014-01-23     
C Si Mn P S Cr Ni Cu V Ti
0.34 0.26 0.74 0.0080 0.0055 0.25 0.30 0.0090 0.020 0.044
表1  试验用Ti-V微合金钢主要化学成分(质量分数, %)
图1  循环热处理工艺路线
图2  固溶处理和固溶处理+正火试样的晶粒形貌
图3  不同循环次数试样下的晶粒形貌
图4  平均晶粒尺寸随着循环次数的变化趋势
图5  不同循环次数连续淬火试样的SEM二次电子像
Cyclic numbers Value of RD (relative differences)
0 (pretreated condition) 0.8477
1 1.2463
2 1.3156
3 1.2614
4 1.3092
5 1.0376
表2  试验钢在不同循环次数下的晶粒尺寸相对差(RD值)
图6  只经过固溶处理和1次循环后试验钢的沉淀相形貌和EDS能谱分析
图7  复杂碳化物平均尺寸及试验钢Rm随着循环次数的变化趋势
图8  试验钢1次循环和7次循环热处理后的位错组态
图9  AKU随着循环次数增加的变化趋势
1 R. A. Grange,Strengthening steel by austenite grain refinement, ASM Trans Quart, 59(1), 26(1966)
2 B. Smoljan,An analysis of combined cyclic heat treatment performance, Journal of Materials Processing Technology, 155, 1704(2004)
3 A. Saha, D. K. Mondal, K. Biswas, J. Maity,Microstructural modifications and changes in mechanical properties during cyclic heat treatment of 0.16% carbon steel, Materials Science and Engineering: A, 534, 465(2012)
4 J. N. Wang, J. Yang, Q. Xia, Y. Wang,On the grain size refinement of TiAl alloys by cyclic heat treatment, Materials Science and Engineering: A, 329, 118(2002)
5 J. Fernández, S. Illescas, J.M. Guilemany,Effect of microalloying elements on the austenitic grain growth in a low carbon HSLA steel, Materials Letters, 61(11), 2389(2007)
6 A. I. Fernández, P. Uranga, B. Lopez B, J.M. Rodriguez-Ibabe,Dynamic recrystallization behavior covering a wide austenite grain size range in Nb and Nb-Ti microalloyed steels, Materials Science and Engineering: A, 361(1), 367(2003)
7 M. Prikryl, A. Kroupa, G. C. Weatherly, S. V. Subramanian,Precipitation behavior in a medium carbon, Ti-VN microalloyed steel, Metallurgical and Materials Transactions A, 27(5), 1149(1996)
8 R. D. K. Misra, H. Nathani, J. E. Hartmann, F. Siciliano,Microstructural evolution in a new 770MPa hot rolled Nb-Ti microalloyed steel, Materials Science and Engineering: A, 394(1), 339(2005)
9 P. A. Manohar, M. Ferry, T. Chandra,Five decades of the Zener equation, ISIJ international, 38(9), 913(1998)
10 R. Kumar, Physical metallurgy of iron and steel (Bombay, Asia Publishing House, 1968) p.92
11 A. Saha, D. K. Mondal, J. Maity,Effect of cyclic heat treatment on microstructure and mechanical properties of 0.6 wt% carbon steel, Materials Science and Engineering: A, 527(16), 4001(2010)
12 LV Zheng,REN Xueping, TONG Jianguo, TU Youhuan, Effect of austenitizing temperature on the mechanical properties of quenched and tempered Ti-V microalloyed steel, Journal of University of Science and Technology Beijing, 36(1), 42(2014)
12 (吕 政, 任学平, 佟建国, 涂友欢, 奥氏体化温度对调质Ti-V微合金钢力学性能的影响, 北京科技大学学报, 36(1), 42(2014))
13 S. Gündüz, R. C. Cochrane,Influence of cooling rate and tempering on precipitation and hardness of vanadium microalloyed steel, Materials & Design, 26(6), 486(2005)
14 M. T. Nagata, J. G. Speer, D. K. Matlock,Titanium nitride precipitation behavior in thin-slab cast high-strength low-alloy steels, Metallurgical and Materials Transactions A, 33(10), 3099(2002)
15 K. Balasubramanian, A. Kroupa, J. S. Kirkaldy,Experimental investigation of the thermodynamics of the Fe-Ti-C austenite and the solubility of titanium carbide, Metallurgical Transactions A, 23(3), 709(1992)
16 Z. Morita, T. Tanaka, T. Yanai,Equilibria of nitride forming reactions in liquid iron alloys, Metallurgical Transactions B, 18(1), 195(1987)
17 K. Narita,Physical chemistry of the groups IVa (Ti, Zr), Va (V, Nb, Ta) and the rare earth elements in steel, Trans ISIJ, 15, 145(1975)
18 A. Pandit, A. Murugaiyan, A. S. Podder, A. Haldar, D. Bhattacharjee, S. Chandra, R. K. Ray,Strain induced precipitation of complex carbonitrides in Nb-V and Ti-V microalloyed steels, Scripta Materialia, 53(11), 1309(2005)
[1] 毛建军, 富童, 潘虎成, 滕常青, 张伟, 谢东升, 吴璐. AlNbMoZrB系难熔高熵合金的Kr离子辐照损伤行为[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] 赵政翔, 廖露海, 徐芳泓, 张威, 李静媛. 超级奥氏体不锈钢24Cr-22Ni-7Mo-0.4N的热变形行为及其组织演变[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] 幸定琴, 涂坚, 罗森, 周志明. C含量对VCoNi中熵合金微观组织和性能的影响[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] 欧阳康昕, 周达, 杨宇帆, 张磊. LPSOMg-Y-Er-Ni合金的组织和拉伸性能[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] 潘新元, 蒋津, 任云飞, 刘莉, 李景辉, 张明亚. 热挤压钛/钢复合管的微观组织和性能[J]. 材料研究学报, 2023, 37(9): 713-720.
[8] 徐利君, 郑策, 冯小辉, 黄秋燕, 李应举, 杨院生. 定向再结晶对热轧态Cu71Al18Mn11合金的组织和超弹性性能的影响[J]. 材料研究学报, 2023, 37(8): 571-580.
[9] 熊诗琪, 刘恩泽, 谭政, 宁礼奎, 佟健, 郑志, 李海英. 固溶处理对一种低偏析高温合金组织的影响[J]. 材料研究学报, 2023, 37(8): 603-613.
[10] 刘继浩, 迟宏宵, 武会宾, 马党参, 周健, 徐辉霞. 喷射成形M3高速钢热处理过程中组织的演变和硬度偏低问题[J]. 材料研究学报, 2023, 37(8): 625-632.
[11] 陈晶晶, 占慧敏, 吴昊, 朱乔粼, 周丹, 李柯. 纳米晶CoNiCrFeMn高熵合金的拉伸力学性能[J]. 材料研究学报, 2023, 37(8): 614-624.
[12] 由宝栋, 朱明伟, 杨鹏举, 何杰. 合金相分离制备多孔金属材料的研究进展[J]. 材料研究学报, 2023, 37(8): 561-570.
[13] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[14] 王昊, 崔君军, 赵明久. 镍基高温合金GH3536带箔材的再结晶与晶粒长大行为[J]. 材料研究学报, 2023, 37(7): 535-542.
[15] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.