Please wait a minute...
材料研究学报  2015, Vol. 29 Issue (2): 127-134    DOI: 10.11901/1005.3093.2014.377
  本期目录 | 过刊浏览 |
粉末冶金Ti-47Al-2Cr-2Nb-0.15B合金的制备及力学性能影响因素
吴杰1,徐磊1(),郭瑞鹏1,2,卢正冠1,崔玉友1,杨锐1
1. 中国科学院金属研究所 沈阳 110016
2. 东北大学材料与冶金学院 沈阳 110819
Preparation of γ-TiAl Alloy From Powder Metallurgy Route and Analysis of the Influence Factors of Mechanical Properties
Jie WU1,Lei XU1,**(),Ruipeng GUO1,2,Zhengguan LU1,Yuyou CUI1,Rui YANG1
1. Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
2. School of Materials and Metallurgy, Northeastern University, Shenyang, 110819, China
引用本文:

吴杰,徐磊,郭瑞鹏,卢正冠,崔玉友,杨锐. 粉末冶金Ti-47Al-2Cr-2Nb-0.15B合金的制备及力学性能影响因素[J]. 材料研究学报, 2015, 29(2): 127-134.
Jie WU, Lei XU, Ruipeng GUO, Zhengguan LU, Yuyou CUI, Rui YANG. Preparation of γ-TiAl Alloy From Powder Metallurgy Route and Analysis of the Influence Factors of Mechanical Properties[J]. Chinese Journal of Materials Research, 2015, 29(2): 127-134.

全文: PDF(3675 KB)   HTML
摘要: 

采用无坩埚感应熔炼超声气体雾化法制备了名义成分为Ti-47Al-2Cr-2Nb-0.15B(%, 原子分数)的预合金粉末, 并对预合金粉末进行了表征。比较了两种不同预处理制度下粉末γ-TiAl合金的室温拉伸塑性和高温持久寿命。结果表明, 真空除气预处理能减小粉末γ-TiAl合金中孔隙缺陷的尺寸及数量从而使粉末γ-TiAl合金的室温塑性稳定性和高温持久寿命提高。为了分析包套材料对粉末γ-TiAl合金组织与力学性能的影响, 选择低碳钢和商业纯钛(CP-Ti)作为包套材料。结果表明, 在1260oC热等静压条件下低碳钢包套与γ-TiAl合金发生显著的反应扩散, 形成的孔隙缺陷恶化了材料的力学性能。在1230oC热等静压条件下CP-Ti对热等静压压力屏蔽作用比低碳钢小, CP-Ti/γ-TiAl压坯更易发生充分的塑性变形, 粉末γ-TiAl合金强度更高。粉末γ-TiAl合金无织构, 晶粒细小, 组织均匀, 拉伸性能优于铸造γ-TiAl合金。

关键词 金属材料,粉末冶金,γ-TiAl合金,预处理,包套材料    
Abstract

Pre-alloyed powders of Ti-47Al-2Cr-2Nb-0.15B (%, atom fraction) were prepared by an electrode induction melting gas atomization process, and powder metallurgy (PM) γ-TiAl alloys were prepared by hot isostatic press (HIP). Pre-alloyed powders of γ-TiAl were characterized. A comparison study was made between vacuum degassed and not degassed for the pre-alloyed powders and the PM alloys were subjected to tensile and rupture life test at different temperatures. Infrared spectrum analysis showed that the powders would absorb H2O when exposed in air. By getting rid of the absorbed H2O and O2 through a carefully designed vacuum degassing pre-treatment, the numbers of voids in the prepared PM γ-TiAl alloys decreased obviously, correspondingly the rupture life, as well as the consistency of room temperature tensile elongation, was also improved. In order to find out the influence of container materials on the microstructure and mechanical properties of the PM γ-TiAl alloys, two different container materials (CP-Ti and mild steel) were adopted. Experimental results showed that a lot of obvious voids appeared in the reaction zone due to severe reaction diffusion between the mild steel container and the PM γ-TiAl alloys when HIPed at 1260oC. The shielding effect of the mild steel container was stronger than that of the CP-Ti container, thus the densification shrinkage process of the CP-Ti canned PM γ-TiAl alloys would be more fully completed when HIPed at 1230oC compared with that of the mild steel canned PM γ-TiAl alloys, and thereby both of the yield and tensile strength were both improved. The γ-TiAl alloys prepared by powder metallurgy route present more uniform microstructure, finer grain and better properties compared with the casting alloys. Furthermore, the PM γ-TiAl alloys had no texture which was very common for the casting alloys.

Key wordsmetallic    materials,    powder    metallurgy,    γ-TiAl,    pre-treatment,    container    material
收稿日期: 2014-07-24     
基金资助:* 国家高技术研究发展计划2013AA031606资助项目。
图1  γ-TiAl预合金粉末的独立粒度分布图
图2  γ-TiAl预合金粉末颗粒的表面形貌(SEM)
图3  Ti-6Al-4V预合金粉末和γ-TiAl预合金粉末 (≤50 μm)在潮湿角落(RH=60%)暴露3 h后升温过程中的红外光谱图
图4  γ-TiAl粉末合金室温塑性频数分布
Sample name Temperature / stress Rupture life
PM TiAl(not degassed) 650oC/450 MPa 87.87 h
PM TiAl(degassed) 650oC/450 MPa 95.27 h
表1  γ-TiAl粉末合金不同预处理制度下高温持久寿命的对比
图5  不同预处理制度下粉末冶金γ-TiAl合金内部孔隙的大小及分布
图6  包套与粉末γ-TiAl合金界面反应层: 在1230oC热等静压温度下低碳钢/γ-TiAl压坯、在1260oC热等静压温度下低碳钢/γ-TiAl压坯、在1260oC热等静压温度下粉末γ-TiAl合金显微组织分布(低碳钢包套)以及在1260oC热等静压温度下CP-Ti/γ-TiAl压坯
图7  经1230oC/140 MPa/3 h热等静压的低碳钢包套压制的粉末γ-TiAl合金、CP-Ti包套压制的粉末γ-TiAl合金的压坯孔隙分布以及压坯孔隙尺寸和数量分布
Sample name Yield strength/MPa Tensile strength/MPa Elongation/%
PM TiAl (CP-Ti) 618.95 644.72 1.38
PM TiAl (mild steel) 516.22 559.95 1.83
表2  低碳钢与CP-Ti包套的粉末冶金γ-TiAl合金的室温拉伸性能
图8  γ-TiAl合金与不同包套材料的流变应力-温度曲线
Sample name T/oC Yield strength/MPa Tensile strength/MPa Elongation/%
Cast TiAl RT 519.14 581.31 1.16
650 396.51 546.66 4.00
PM TiAl RT 618.95 644.72 1.38
650 433.80 584.80 7.60
表3  典型铸造与粉末冶金γ-TiAl合金的拉伸性能
图9  铸造γ-TiAl合金γ相取向成像、铸造γ-TiAl合金γ相(111)与<110>极图以及粉末γ-TiAl合金γ相取向成像和粉末TiAl合金γ相(111)与<110>极图
1 C. Leyens, M. Peters,CHEN Zhenhua,et al, transl, Titanium and titanium alloy (Beijing, Chemical Industry Press, 2005) p.52
1 (52)
2 XU Lei,LI Juying, TIAN Xiao, CUI Yuyou, YANG Rui, Fabrication and characterization of TiAl based pre-alloyed powder produced by gas atomization, Rare Metal Materials and Engineering, 37(Suppl.3), 815(2008)
2 (徐 磊, 李菊英, 田 晓, 崔玉友, 杨 锐, 洁净TiAl基预合金粉末制备和表征, 稀有金属材料与工程, 37(Suppl.3), 815(2008)
3 Alain Lasalmonie,Intermetallics: Why is it so difficult to introduce them in gas turbine engines? Intermetallics, 14(10-11), 1123(2006)
4 Fritz Appel, Jonathan D. H. Paul, Michael oehring, Gamma Titanium Aluminide Alloys Science and Technology (Germany, Wiley-VCH Verlag & Co. KGaA, 2011) p.479
5 WANG Gang,An investigation of the fabrication and high temperature deformation behavior of P/M TiAl alloys, PhD thesis, Institute of Metal Research, Chinese Academy of Sciences (2011)
5 (王 刚,粉末冶金TiAl合金制备及高温变形行为研究, 博士学位论文, 中国科学院金属研究所(2011))
6 ZHANG Ji,JING Yongjuan, FU Mingjie, GAO Fan, Microstructure optimization of ingot metallurgy TiAl, Intermetallics, 27, 21(2012)
7 CHENG Wenxiang,XU Lei, LEI Jiafeng, LIU Yuyin, YANG Rui, Effects of powder size segregation on tensile properties of Ti-5Al-2.5Sn ELI alloy powder, The Chinese Journal of Nonferrous Metals, 23(2), 363(2013)
7 (程文祥, 徐 磊, 雷家峰, 刘羽寅, 杨 锐,粉末粒度偏析对Ti-5Al-2.5Sn ELI 粉末合金拉伸性能的影响, 中国有色金属学报, 23(2), 363(2013))
8 HU Hanqi, Fundamentals of solidification (Second Edition)(Beijing, Machinery Industry Press, 2000) p.255
8 (255)
9 L. Xu, C. G. Bai, D. Liu, W. Sun, D. J. Yu, Y. Y. Cui, R. Yang,Processing and properties of gamma TiAl sheet from atomized powder, In Structural Aluminides for Elevated Temperature Applications, edited by Y. W. Kim, D. G. Morris, R. Yang and C. Leyens (TMS, Warrendale, PA, 2008)
10 Y. T. Lee, H. Schurmann, K. J. Grundhoff, M. Peters,Effect of degassing treatment on microstructure and mechanical properties of P/M Ti-6Al-4V, Powder Metallurgy International,22(1), (1990)
11 Shinichi Takagi,Chiaki Ouchi, Effect of oxygen content on microstructure and mechanical properties of cast and HIP’ed γ TiAl alloys, Materials Transactions, 38, (1997)
12 WANG Shaogang,WANG Sucheng, ZHANG Lei, Application of high resolution transmission X-ray tomography in material science, Acta Metallurgica Sinica, 49(8), 902(2013)
12 (王绍钢, 王苏程, 张 磊, 高分辨透射X射线三维成像在材料科学中的应用, 金属学报, 49(8), 902(2013))
13 H. Jiang, K. Zhang, F. A. Garcia-Pastor, M. H. Loretto , D. Hu , P. J.Withers , M. Preuss , X. Wu , Microstructure and properties of hot isostatically pressed powder and extruded Ti25V15Cr2Al0.2C, Materials Science and Technology, 27(8), 1244(2011)
14 CHENG Wenxiang,Investigation on Densification Behavior and Finite Element Modeling of Ti-5Al-2.5Sn ELI Pre-alloyed Powders, Master thesis, Institute of Metal Research, Chinese Academy of Sciences (2013)
14 (程文祥,Ti-5Al-2.5Sn ELI预合金粉末热等静压致密化行为与有限元模拟研究, 硕士学位论文, 中国科学院金属研究所(2013))
15 WU Jun, Densification Behavior of Ti-5Al-2.5Sn ELI Pre-alloyed Powders under Hot Isostatic Pressing, Master thesis, Institute of Metal Research, Chinese Academy of Sciences (2011)
15 (邬 军,Ti-5Al-2.5Sn ELI预合金粉末热等静压致密化行为研究, 硕士学位论文, 中国科学院金属研究所(2011))
16 GUO Ruipeng,XU Lei, BAI Chunguang, WU Jie, WANG Qingjiang, YANG Rui, Effect of can design on tensile properties of typical powder metallurgy titanium alloys, The Chinese Journal of Nonferrous Metals, 24(8), 2051(2014)
16 (郭瑞鹏, 徐 磊, 柏春光, 吴 杰, 王清江, 杨 锐, 包套设计对典型钛合金粉末合金拉伸性能的影响, 中国有色金属学报, 24(8), 2051(2014))
17 WANG Gang,ZHENG Zhuo, CHANG Litao, XU Lei, CUI Yuyou, YANG Rui, Characterization of TiAl pre-alloyed powder and its densification microstructure, Acta Metallurgica Sinica, 47(10), 1263(2011)
17 (王 刚, 郑 卓, 常立涛, 徐 磊, 崔玉友, 杨锐, TiAl预合金粉末的表征和后续致密化显微组织特点, 金属学报, 47(10), 1263(2011))
18 K. C. Hari Kumar, P. Wollaiits, L. Delaey,Thermodynamic reassessment and calculation of Fe Ti phase diagram, Calphad, 18(2), 223(1994)
19 M.Palm,Concepts derived from phase diagram studies for the strengthening of Fe-Al-based alloys, Intermetallics, 13(12), 1287(2005)
20 LIU Yong, TANG Huiping, Powder Metallurgical Titanium Based Structural Materials (Changsha, Central South University Press, 2012) p.88
20 (88)
21 LIU Dong,Hot Hot extrusion process, microstructure control and mechanical properties of γ-TiAl alloys, PhD thesis, Institute of Metal Research, Chinese Academy of Sciences (2007)
21 (刘 冬, γ-TiAl热挤压成型工艺、组织控制及性能研究, 博士学位论文, 中国科学院金属研究所(2007))
22 DONG Ping, An analysis of the shielding effect of container on isocratic pressing, 20(3), 12(2002)
22 (董 平, 包套对等静压压力的屏蔽效应分析, 金属成形工艺, 20(3), 12(2002))
23 WANG Zhen,Manufacturing, microstructure evolution and mechanical properties of γ-TiAl alloy sheet, PhD thesis, Institute of Metal Research, Chinese Academy of Sciences (2014)
23 (王 震, γ-TiAl合金板材制备、组织演化及性能研究, 博士学位论文, 中国科学院金属研究所(2014))
24 W. B. Eisen, B. L. Ferguson, R. M. German, R. Iacocca, P. W. Lee, D. Madan, K. Moyer, H. Sanderow, and Y. Trudel Hardbound, ASM Handbook Volume 07: Powder Metal Technologies and Applications (American Society of Metals, 1998) p.1431
25 WU Jie,XU Lei, LU Bin, CUI Yuyou, YANG Rui, Preparation of Ti2AlNb alloy by powder metallurgy and its rupture life, Chinese Journal of Materials Research, 28(5), 391(2014)
25 (吴 杰, 徐 磊, 卢 斌, 崔玉友, 杨 锐, 粉末冶金Ti2AlNb合金的制备及持久寿命, 材料研究学报, 28(5), 391(2014))
[1] 毛建军, 富童, 潘虎成, 滕常青, 张伟, 谢东升, 吴璐. AlNbMoZrB系难熔高熵合金的Kr离子辐照损伤行为[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] 赵政翔, 廖露海, 徐芳泓, 张威, 李静媛. 超级奥氏体不锈钢24Cr-22Ni-7Mo-0.4N的热变形行为及其组织演变[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] 幸定琴, 涂坚, 罗森, 周志明. C含量对VCoNi中熵合金微观组织和性能的影响[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] 欧阳康昕, 周达, 杨宇帆, 张磊. LPSOMg-Y-Er-Ni合金的组织和拉伸性能[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] 徐利君, 郑策, 冯小辉, 黄秋燕, 李应举, 杨院生. 定向再结晶对热轧态Cu71Al18Mn11合金的组织和超弹性性能的影响[J]. 材料研究学报, 2023, 37(8): 571-580.
[8] 熊诗琪, 刘恩泽, 谭政, 宁礼奎, 佟健, 郑志, 李海英. 固溶处理对一种低偏析高温合金组织的影响[J]. 材料研究学报, 2023, 37(8): 603-613.
[9] 刘继浩, 迟宏宵, 武会宾, 马党参, 周健, 徐辉霞. 喷射成形M3高速钢热处理过程中组织的演变和硬度偏低问题[J]. 材料研究学报, 2023, 37(8): 625-632.
[10] 由宝栋, 朱明伟, 杨鹏举, 何杰. 合金相分离制备多孔金属材料的研究进展[J]. 材料研究学报, 2023, 37(8): 561-570.
[11] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[12] 王昊, 崔君军, 赵明久. 镍基高温合金GH3536带箔材的再结晶与晶粒长大行为[J]. 材料研究学报, 2023, 37(7): 535-542.
[13] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.
[14] 秦鹤勇, 李振团, 赵光普, 张文云, 张晓敏. 固溶温度对GH4742合金力学性能及γ' 相的影响[J]. 材料研究学报, 2023, 37(7): 502-510.
[15] 刘天福, 张滨, 张均锋, 徐强, 宋竹满, 张广平. 缺口应力集中系数对TC4 ELI合金低周疲劳性能的影响[J]. 材料研究学报, 2023, 37(7): 511-522.