Please wait a minute...
材料研究学报  2015, Vol. 29 Issue (2): 115-119    DOI: 10.11901/1005.3093.2014.122
  本期目录 | 过刊浏览 |
Nb掺杂碲化铅合金的热电性能
赵杰1,2,辛彩妮1,2,韩叶茂1,2,周敏1(),黄荣进1,李来风1
1. 航天低温推进剂技术国家重点实验室 中国科学院理化技术研究所 北京 100190
2. 中国科学院大学 北京 100049
Thermoelectric Properties of Nb-doped Lead Telluride Alloys
Jie ZHAO1,2,Caini XIN1,2,Yemao HAN1,2,Min ZHOU1,*(),Rongjin HUANG1,Laifeng LI1
1. State Key Laboratory of Technologies in Space Cryogenic Propellants, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
2. University of Chinese Academy of Sciences, Beijing 100049, China
引用本文:

赵杰,辛彩妮,韩叶茂,周敏,黄荣进,李来风. Nb掺杂碲化铅合金的热电性能[J]. 材料研究学报, 2015, 29(2): 115-119.
Jie ZHAO, Caini XIN, Yemao HAN, Min ZHOU, Rongjin HUANG, Laifeng LI. Thermoelectric Properties of Nb-doped Lead Telluride Alloys[J]. Chinese Journal of Materials Research, 2015, 29(2): 115-119.

全文: PDF(1189 KB)   HTML
摘要: 

用机械合金(MA)和放电等离子烧结(SPS)方法制备出Nb掺杂的Pb1.1Te合金块体, 在323-673 K温区内测试其电阻率、Seebeck系数和热扩散系数, 并计算其热电优值。结果表明: 在Pb1.1Te中掺杂Nb能有效提高材料的载流子浓度, 优化其电性能, 使Pb1.03Nb0.07Te的功率因子在523-673 K温区范围内超过20 mW/(cmK2)。同时, Nb的引入可增强声子散射, 降低晶格热导率, 从而得到较高的热电优值。样品Pb1.03Nb0.07Te在673 K时ZT值最大为1.27, 是基体材料Pb1.1Te的2倍。

关键词 金属材料Seebeck系数晶格热导率n型PbTe合金    
Abstract

Bulk Nb-doped lead telluride Pb1.1Te was prepared by using a combined process of mechanical alloying (MA) and spark plasma sintering (SPS). Then its transport properties such as electrical resistivity, Seebeck coefficient and thermal diffusion coefficient were measured in a temperature range from 323 K to 673 K. As a result, the doped Nb can effectively enhance the phonon scattering ability of the lead telluride Pb1.1Te, and optimize its electrical performance as well. Large power factors of over 20 mW/(cm·K2) were obtained in a wide temperature range (523-623 K). In addition, the thermal conductivity decreased with the increasing Nb content, which may also be resulted from the increase of the phonon scattering ability, thereby an optimal ZT value may be found. A maximum ZT value of 1.27 was obtained for Pb1.03Nb0.07Te at 673 K, which was twice as high as that for the un-doped Pb1.1Te.

Key wordsmetallic materials    Seebeck coefficient    lattice thermal conductivity    n-type PbTe alloys
收稿日期: 2014-03-17     
图1  样品Pb1.1-xNbxTe (x=0, 0.02, 0.04, 0.06, 0.07, 0.08)的XRD谱
图2  样品Pb1.1Te和Pb1.03Nb0.07Te的断口形貌
图3  样品Pb1.1-xNbxTe (x=0, 0.02, 0.04, 0.06, 0.07, 0.08)的电阻率、Seebeck系数以及功率因子与温度的关系(图a, b中的★代表已报道的纯PbTe[18]在323 K时的电阻率和Seebeck系数
图4  样品Pb1.1-xNbxTe在300 K霍尔迁移率与载流子浓度的关系
图5  Pb1.1-xNbxTe的总热导率κ和晶格热导率κl与温度的关系
图6  样品Pb1.1-xNbxTe (x=0, 0.02, 0.04, 0.06, 0.07, 0.08)的ZT值与温度的关系
1 D. M. Rowe, CRC Handbook of Thermoelectrics (CRC Press, 1995)p.7
2 L. E. Bell,Cooling, heating, generating power, and recovering waste heat with thermoelectric systems, Science, 321, 1457(2008)
3 S. B. Riffat, X. Ma,Thermoelectrics: a review of present and potential applications, Applied Thermal Engineering, 23, 913(2003)
4 G. J. Snyder, E.S.Toberer,Complex thermoelectric materials, Nature Materials, 7, 105(2008)
5 J. R. Sootsman, D. Y. Chung, M. G. Kanatzidis,New and old concepts in thermoelectric materials, Angew Chem. Int. Ed. Engl., 48, 8616(2009)
6 M.?S. Dresselhaus, G. Chen, M.?Y. Tang, R.G. Yang, H. Lee, D.?Z. Wang, Z.?F. Ren, J.-P. Fleurial, P. Gogna,New directions for low-dimensional thermoelectric materials, Advanced Materials, 19, 1043(2007)
7 J.-F. Li, W.-S. Liu, L.-D. Zhao, M. Zhou,High-performance nanostructured thermoelectric materials, NPG Asia Materials, 2, 152(2010)
8 A. J. Minnich, M. S. Dresselhaus, Z. F. Ren, G. Chen,Bulk nanostructured thermoelectric materials: current research and future prospects, Energy & Environmental Science, 2, 466(2009)
9 Y. Pei, H. Wang, G. J. Snyder,Band engineering of thermoelectric materials, Advanced Materials, 24, 6125(2012)
10 J. P. Heremans, V. Jovovic, E. S. Toberer, A. Saramat, K. Kurosaki, A. Charoenphakdee, S. Yamanaka, G. J. Snyder,Enhancement of thermoelectric efficiency in PbTe by distortion of the electronic density of states, Science, 321, 554(2008)
11 K. F. Hsu, S. Loo, F. Guo, W. Chen, J. S. Dyck, C. Uher, T. Hogan, E. K. Polychroniadis, M. G. Kanatzidis,Cubic AgPbmSbTe2+m: bulk thermoelectric materials with high figure of merit, Science, 303, 818(2004)
12 S. N. Girard, J. He, X. Zhou, D. Shoemaker, C. M. Jaworski, C. Uher, V. P. Dravid, J. P. Heremans, M. G. Kanatzidis,High performance Na-doped PbTe-PbS thermoelectric materials: electronic density of states modification and shape-controlled nanostructures, Journal of the American Chemical Society, 133, 16588(2011)
13 Y. Pei, A. LaLonde, S. Iwanaga, G. J. Snyder,High thermoelectric figure of merit in heavy hole dominated PbTe, Energy & Environmental Science, 4, 2085(2011)
14 Y. Pei, X. Shi, A. LaLonde, H. Wang, L. Chen, G. J. Snyder,Convergence of electronic bands for high performance bulk thermoelectrics, Nature, 473, 66(2011)
15 R. Fritts,Thermoelectric Materials and Devices (Reinhold Pub.Corp., 1960)p.143-162
16 A. D. LaLonde, Y. Pei, H. Wang, G. J. Snyder,Lead telluride alloy thermoelectrics, Materials Today, 14, 526(2011)
17 Y. Pei, N. A. Heinz, A. LaLonde, G. J. Snyder,Combination of large nanostructures and complex band structure for high performance thermoelectric lead telluride, Energy & Environmental Science, 4, 3640(2011)
18 Y.-L. Pei, Y. Liu,Electrical and thermal transport properties of Pb-based chalcogenides: PbTe, PbSe, and PbS, Journal of Alloys and Compounds, 514, 40(2012)
19 H. Z. Wang, Q. Y. Zhang, B. Yu, H. Wang, W. S. Liu, G. Chen, Z. F. Ren,Transmission electron microscopy study of Pb-depleted disks in PbTe-based alloys, Journal of Materials Research, 26, 912, (2011)
20 J. P. Heremans, C. M. Thrush, D. T. Morelli,Thermopower enhancement in PbTe with Pb precipitates, Journal of Applied Physics, 98, 063703(2005)
21 Z. Chen, M. Zhou, R. J. Huang, C. M. Song, Y. Zhou, L. F. Li,Thermoelectric properties of p-type Pb-doped Bi85Sb15?xPbx alloys at cryogenic temperatures, Journal of Alloys and Compounds, 511, 85(2012)
22 H. Wang, J.-F. Li, C.-W. Nan, M. Zhou, W.S. Liu, B.-P. Zhang, T. Kita,High-performance Ag0.8Pb18+xSbTe20 thermoelectric bulk materials fabricated by mechanical alloying and spark plasma sintering, Applied Physics Letters, 88, 092104(2006)
23 X. J. Zheng, L. Zhu, Y.-H. Zhou, Q. Zhang,Impact of grain sizes on phonon thermal conductivity of bulk thermoelectric materials, Applied Physics Letters, 87, 242101(2005)
24 M. Zhou, L. Chen, C. Feng, D. Wang, J.-F. Li,Moderate-temperature thermoelectric properties of TiCoSb-based half-Heusler compounds Ti1-xTaxCoSb, Journal of Applied Physics, 101, 113714(2007)
[1] 毛建军, 富童, 潘虎成, 滕常青, 张伟, 谢东升, 吴璐. AlNbMoZrB系难熔高熵合金的Kr离子辐照损伤行为[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] 赵政翔, 廖露海, 徐芳泓, 张威, 李静媛. 超级奥氏体不锈钢24Cr-22Ni-7Mo-0.4N的热变形行为及其组织演变[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] 幸定琴, 涂坚, 罗森, 周志明. C含量对VCoNi中熵合金微观组织和性能的影响[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] 欧阳康昕, 周达, 杨宇帆, 张磊. LPSOMg-Y-Er-Ni合金的组织和拉伸性能[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] 徐利君, 郑策, 冯小辉, 黄秋燕, 李应举, 杨院生. 定向再结晶对热轧态Cu71Al18Mn11合金的组织和超弹性性能的影响[J]. 材料研究学报, 2023, 37(8): 571-580.
[8] 熊诗琪, 刘恩泽, 谭政, 宁礼奎, 佟健, 郑志, 李海英. 固溶处理对一种低偏析高温合金组织的影响[J]. 材料研究学报, 2023, 37(8): 603-613.
[9] 刘继浩, 迟宏宵, 武会宾, 马党参, 周健, 徐辉霞. 喷射成形M3高速钢热处理过程中组织的演变和硬度偏低问题[J]. 材料研究学报, 2023, 37(8): 625-632.
[10] 由宝栋, 朱明伟, 杨鹏举, 何杰. 合金相分离制备多孔金属材料的研究进展[J]. 材料研究学报, 2023, 37(8): 561-570.
[11] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[12] 王昊, 崔君军, 赵明久. 镍基高温合金GH3536带箔材的再结晶与晶粒长大行为[J]. 材料研究学报, 2023, 37(7): 535-542.
[13] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.
[14] 秦鹤勇, 李振团, 赵光普, 张文云, 张晓敏. 固溶温度对GH4742合金力学性能及γ' 相的影响[J]. 材料研究学报, 2023, 37(7): 502-510.
[15] 刘天福, 张滨, 张均锋, 徐强, 宋竹满, 张广平. 缺口应力集中系数对TC4 ELI合金低周疲劳性能的影响[J]. 材料研究学报, 2023, 37(7): 511-522.