Please wait a minute...
材料研究学报  2015, Vol. 29 Issue (2): 108-114    DOI: 10.11901/1005.3093.2014.407
  本期目录 | 过刊浏览 |
退火温度对冷轧Fe-Mn-Al-C低密度钢性能的影响
杨富强,宋仁伯(),李亚萍,孙挺,王开坤,康泰
北京科技大学材料科学与工程学院 北京 100083
Effect of Annealing Temperature on Properties of Cold Rolled Fe-Mn-Al-C Low Density Steel
Fuqiang YANG,Renbo SONG(),Yaping LI,Ting SUN,Kaikun WANG,Tai KANG
(School of Materials Science and Engineering, University of Science and Technology Beijing,
Beijing 100083, China)
引用本文:

杨富强,宋仁伯,李亚萍,孙挺,王开坤,康泰. 退火温度对冷轧Fe-Mn-Al-C低密度钢性能的影响[J]. 材料研究学报, 2015, 29(2): 108-114.
Fuqiang YANG, Renbo SONG, Yaping LI, Ting SUN, Kaikun WANG, Tai KANG. Effect of Annealing Temperature on Properties of Cold Rolled Fe-Mn-Al-C Low Density Steel[J]. Chinese Journal of Materials Research, 2015, 29(2): 108-114.

全文: PDF(3108 KB)   HTML
摘要: 

在850-1050℃范围内系统分析了冷轧Fe-Mn-Al-C钢的力学性能、金相组织、XRD图谱以及断裂行为, 研究其在退火过程中奥氏体、铁素体、碳化物与力学性能的转变规律。结果表明, 在850℃退火处理后冷轧Fe-Mn-Al-C钢的组织为奥氏体+带状d-铁素体+a-铁素体+k碳化物, 晶间网状铁素体和较高的碳化物含量使钢板具有较高的强度但是塑性极差, 发生解理断裂; 在900-1050℃钢板的基体为奥氏体组织, a-铁素体含量下降, 而带状d-铁素体破碎呈不连续岛状分布; 当d-铁素体长大程度超过奥氏体组织时, 铁素体含量增大, XRD峰值升高; 退火组织的转变导致抗拉强度随温度的升高而下降, 断后伸长率提高; 在1000℃时强塑积达到最高值, 得到强度与韧性的良好组合, 抗拉强度为1003.1 MPa, 断后伸长率为41.28%, 强塑积为41.41 GPa%。为了使冷轧Fe-Mn-Al-C钢具有良好的强韧性, 退火温度不可低于950℃。同时, Fe-Mn-Al-C钢的测量密度为6.55 gcm-3, 减重效果显著, 达到16.6%。

关键词 金属材料低密度钢退火温度微观组织力学性能    
Abstract

Effect of annealing treatment in a temperature range of 850-1050℃ on the evolution of microstructure involved with austenite, ferrite and carbides etc., as well as the mechanical properties and fracture behavior was studied for a cold rolled Fe-Mn-Al-C low density steel. The results show that the experimental steel annealed at 850℃ exhibits a complex microstructure consisted of austenite, banded d-ferrite, a-ferrite and small amount of carbides; there also existed intercrystalline network of ferrite and carbides which resulted in higher strength and poor plasticity, thus the steel becomes susceptible to cleavage fracture; the steel annealed at 900-1050℃ consisted of recrystallized austenite as matrix, in which the volume fraction of a-ferrite decreased with the increasing temperature, while the band like d-ferrite was crushed into islets and distributed in the matrix discontinuously; as the growth of d-ferrite was more obvious than that of austenite, larger volume fraction of ferrite did occur, which resulted in high intensity of X-ray diffraction peaks of ferrite; the microstructure evolution during annealing lead to decrease of tensile strength and increase of total elongation with the increasing temperature; the experimental steel annealed at 1000℃ exhibits excellent combination of strength and ductility: i.e. tensile strength 1003.1 MPa, total elongation 41.28% and product of strength with ductility 41.4 GPa%. Therefore, to acquire the optimal combination of strength and ductility, the cold-rolled Fe-Mn-Al-C steel should be annealed at temperatures above 950℃. Furthermore, the measured density of 6.55 gcm-3 ensures this kind of ultra-high strength steel a remarkable weight reduction effect of 16.6%.

Key wordsmetallic materials    low density steel    annealing temperature    microstructure    mechanical properties
收稿日期: 2014-08-11     
C Mn Al Si Nb P S Fe
0.95 27.02 11.5 0.59 0.043 ≤0.003 ≤0.003 Bal.
表1  实验用钢的化学成分
T/℃ Rm/MPa Rp0.2/MPa Elongation/% Rm×Elongation/GPa% HV
850 - - 0.72 - 400.7
900 1176.9 907.6 27.60 32.48 357.0
950 1089.9 847.8 35.68 38.89 331.5
1000 1003.1 738.1 41.28 41.41 308.9
1050 953.7 656.6 43.20 41.20 296.9
表2  Fe-Mn-Al-C钢不同温度退火后的力学性能
图1  实验用钢的抗拉强度与硬度、断后伸长率和强塑积随退火温度的变化
图2  不同温度退火后试样的真实应力-应变曲线和加工硬化曲线
图3  在不同温度退火后实验用钢的SEM像
图4  在不同温度退火的实验用钢的XRD谱
图5  不同温度下各相的质量分数
图6  实验用钢的拉伸断口形貌
图7  Thermal-Calc计算平衡相图和XRD计算结果
图8  在850℃退火的d-铁素体中γ2形貌及线扫描结果
1 TANG Di,MI Zhenli, CHEN Yulai, Technology and research and development of advanced automobile steel abroad, Iron and Steel, 40(6), 1(2005)
1 (唐 荻, 米振莉, 陈雨来, 国外新型汽车用钢的技术要求及研究开发现状, 钢铁, 40(6), 1(2005))
2 D. Suh, N. J. Kim,Low-density steels, Scripta Materialia, 68(6), 337(2013)
3 Z. H. Cai, H. Ding, R. D. K. Misra, H. Kong, H. Y. Wu,Unique impact of ferrite in influencing austenite stability and deformation behavior in a hot-rolled Fe-Mn-Al-C steel, Materials Science and Engineering: A, 595, 86(2014)
4 H. Ding, Z. Tang, W. Li, M. Wang, D. Song,Microstructures and Mechanical Properties of Fe-Mn-(Al, Si) TRIP/TWIP Steels, Journal of Iron and Steel Research, International, 13(6), 66(2006)
5 G. Frommeyer,Udo Brux, Microstructure and mechanical properties of high-strength Fe-Mn-Al-C lihgt-weight TRIPLEX steel, Steel Research Int., 77(9), 627(2006)
6 O. Gr?ssel, L. Krüger, G. Frommeyer, L. W. Meyer,High strength Fe-Mn-(Al, Si) TRIP/TWIP steels development- properties-application, International Journal of Plasticity, 16(10), 1391(2000)
7 J. D. Yoo, S. W. Hwang, K. Park,Factors influencing the tensile behavior of a Fe-28Mn-9Al-0.8C steel, Materials Science and Engineering: A, 508(1), 234(2009)
8 A. Imandoust, A. Zarei-Hanzaki, S. Heshmati-Manesh, S. Moemeni, P. Changizian,Effects of ferrite volume fraction on the tensile deformation characteristics of dual phase twinning induced plasticity steel, Materials & Design, 53, 99(2014)
9 I. Kalashnikov, O. Acselrad, A. Shalkevich, C. Pereira L,Chemical composition optimization for austenitic steels of the Fe-Mn-Al-C system, Journal of Materials Engineering and Performance, 9(6), 597(2000)
10 A. Etienne, V. Massardier-Jourdan, S. Cazottes, X. Garat, M. Soler, I. Zuazo, X. Kleber,Ferrite effects in Fe-Mn-Al-C triplex steels, Metallurgical and Materials Transactions A, 45(1), 324(2014)
11 H. Kim, D. Suh, N. J. Kim,Fe-Al-Mn-C lightweight structural alloys: a review on the microstructures and mechanical properties, Science and Technology of Advanced Materials, 14(1), 14205(2013)
12 M. C. Li, H. Chang, P. W. Kao, D. Gan,The effect of Mn and Al contents on the solvus of κ phase in austenitic Fe-Mn-Al-C alloys, Materials Chemistry and Physics, 59(1), 96(1999)
13 M. C. Haa, K. Jin-Mo, J. Lee, S. W. Hwang, K. Park,Tensile deformation of a low density Fe-27Mn-12Al-0.8C duplex steel in association with ordered phases at ambient temperature, Materials Science & Engineering A, 586, 276(2013)
14 K. Ishida, H. Ohtanl, N. Satoh, R. Kainuma, T. Nishizawa,Phase equilibra in Fe-Mn-Al-C alloys, ISIJ Int, 30(8), 680(1990)
15 K. Lee, S. Park, Y. S. Choi, S. Kim, T. Lee, K. H. Oh, H. N. Han,Dual-scale correlation of mechanical behavior in duplex low-density steel, Scripta Materialia, 69(8), 618(2013)
16 Z. Q. Wu, H. Ding, H. Y. Li, M. L. Huang, F. R. Cao,Microstructural evolution and strain hardening behavior during plastic deformation of Fe-12Mn-8Al-0.8C steel, Materials Science and Engineering: A, 584, 150(2013)
17 V. Torabinejad, A. Zarei-Hanzaki, S. Moemeni, A. Imandoust,An investigation to the microstructural evolution of Fe-29Mn-5Al dual-phase twinning-induced plasticity steel through annealing, Materials & Design, 32(10), 5015(2011)
18 C. Seo, K. H. Kwon, K. Choi, N. J. Kim, K. Kim, J. H. Kwak, S. Lee, N. J. Kim,Deformation behavior of ferrite-austenite duplex lightweight Fe-Mn-Al-C steel, Scripta Materialia, 66(8), 519(2012)
19 G. Fargas, M. Anglada, A. Mateo,Effect of the annealing temperature on the mechanical properties, formability and corrosion resistance of hot-rolled duplex stainless steel, Journal of Materials Processing Technology, 209(4), 1770(2009)
20 H. Cho, K. Lee,Effect of cold working and isothermal aging on the precipitation of sigma phase in 2205 duplex stainless steel, Materials Characterization, 75, 29(2013)
21 H. L. X. Jin,Secondary austenite morphologies in fusion zone of welded joint after postweld heat treatment with a continuous wave laser, Journal of Materials Science & Technology, 28(3), 249(2012)
22 K. Choi, C. Seo, H. Lee, S. K. Kim, J. H. Kwak, K. G. Chin, K. Park, N. J. Kim,Effect of aging on the microstructure and deformation behavior of austenite base lightweight Fe-28Mn-9Al-0.8C steel, Scripta Materialia, 63(10), 1028(2010)
23 S. S. Sohna, B. J. Leea, S. Leea, N. J. Kimb, J. H. Kwakc,Effect of annealing temperature on microstructural modification and tensile properties in 0.35C-3.5Mn-5.8Al lightweight steel, Acta Mater., 61(13), 5050(2013)
[1] 毛建军, 富童, 潘虎成, 滕常青, 张伟, 谢东升, 吴璐. AlNbMoZrB系难熔高熵合金的Kr离子辐照损伤行为[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] 赵政翔, 廖露海, 徐芳泓, 张威, 李静媛. 超级奥氏体不锈钢24Cr-22Ni-7Mo-0.4N的热变形行为及其组织演变[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] 幸定琴, 涂坚, 罗森, 周志明. C含量对VCoNi中熵合金微观组织和性能的影响[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] 欧阳康昕, 周达, 杨宇帆, 张磊. LPSOMg-Y-Er-Ni合金的组织和拉伸性能[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] 潘新元, 蒋津, 任云飞, 刘莉, 李景辉, 张明亚. 热挤压钛/钢复合管的微观组织和性能[J]. 材料研究学报, 2023, 37(9): 713-720.
[8] 徐利君, 郑策, 冯小辉, 黄秋燕, 李应举, 杨院生. 定向再结晶对热轧态Cu71Al18Mn11合金的组织和超弹性性能的影响[J]. 材料研究学报, 2023, 37(8): 571-580.
[9] 熊诗琪, 刘恩泽, 谭政, 宁礼奎, 佟健, 郑志, 李海英. 固溶处理对一种低偏析高温合金组织的影响[J]. 材料研究学报, 2023, 37(8): 603-613.
[10] 刘继浩, 迟宏宵, 武会宾, 马党参, 周健, 徐辉霞. 喷射成形M3高速钢热处理过程中组织的演变和硬度偏低问题[J]. 材料研究学报, 2023, 37(8): 625-632.
[11] 陈晶晶, 占慧敏, 吴昊, 朱乔粼, 周丹, 李柯. 纳米晶CoNiCrFeMn高熵合金的拉伸力学性能[J]. 材料研究学报, 2023, 37(8): 614-624.
[12] 由宝栋, 朱明伟, 杨鹏举, 何杰. 合金相分离制备多孔金属材料的研究进展[J]. 材料研究学报, 2023, 37(8): 561-570.
[13] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[14] 王昊, 崔君军, 赵明久. 镍基高温合金GH3536带箔材的再结晶与晶粒长大行为[J]. 材料研究学报, 2023, 37(7): 535-542.
[15] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.